
Event Actions and Escalation (opEvents 4)

Action Policy Language
Action Policy Application and Timing
Supported Policy Actions
Notes for watchdog and element_watchdog
Configuration for log.XYZ()
Configuration for script.XYZ()
Configuration for email()
Configuration for syslog.XYZ() and nmissyslog.XYZ()
Configuration for escalate.XYZ()

Escalation Policies
Escalation Time and Priority Restrictions
Escalation Step Definition

opEvents provides the Event Action Policy as a flexible mechanism for reacting to events. This document briefly describes how to configure the service,
the policy language and the currently supported actions.

Action Policy Language

The action policy is configured in , primarily in the section named . The policy consists of any number of nested if-this-conf/EventActions.json policy
then-that clauses, which specify the conditions an event must conform to and what actions to take in case of a match. Further configuration sections
specific to particular actions can be present in the same file.

Here is a brief example policy snippet:

"policy" : {
 "1" : {
 "BREAK" : "false",
 "IF" : "event.any",
 "THEN" : {
 "2" : {
 "THEN" : "tag.outageCurrent(FALSE)",
 "BREAK" : "false",
 "IF" : "event.details =~ \"outage_current=false\""
 },
 "20" : {
 "BREAK" : "false",
 "IF" : "node.configuration.roleType eq \"distribution\" and event.event =~ qr{Down}",
 "THEN" : "priority(+2)"
 },
 "10" : { ...
 },

The overall structure is relatively straight-forward: a rule has a numeric identifier which controls the order of evaluation, precisely one set of IF and THEN
clauses and an optional BREAK property.

The IF expression is basically any arbitrary Perl expression, but tokens of the form .name or .name are substituted with the respective event or event node
node property value. The special wildcards and are replaced by a logical true value. Furthermore, tokens that match event.any node.any extdb.

 will be substituted with the result of an query. The IF expression can include "AND" as well as "and" but does queryname.column external enrichment
not support "OR" or "or".

If your IF expression does require text that could be misinterpreted as a substitution token (e.g. the in "Nr.1" "IF" : "event.details eq "NTP
), then you should escape the dotted expression with a backslash (e.g.). Please note that in versions before Server Nr.1"" "NTP Server Nr\.1"

2.2.2, any misidentified unparseable tokens were flagged as errors and were included in the final expression to be tested.not

In version 2.2 and newer, tokens of the form are also substituted by the value of the named macro (which can be defined in the macro.macroname
configuration file in the section).opCommon.json macro

Please note that for maximum robustness you should express any regular expression in IFs as or }, /regexp contents/ qr{regexp contents NOT
as "regexp contents": the doublequoted variant only works for very simple patterns. The perl equivalency sign for strings 'eq' will function as a regex in not
these items.

The substituted values are inserted into the expression in double quotes. In versions 2.0.4 and above, the special characters are backslash-@%$"`
escaped to ensure that Perl does not interpret them when the expression is evaluated. In version 2.0.4 and above, purely numeric values are inserted
unquoted as they are; before they were inserted double-quoted like strings.

https://community.opmantek.com/display/opEvents/External+Enrichment+in+opEvents

The standard event properties are , and the common node properties are .listed on this page documented here

The THEN clause is executed if and only if the IF expression evaluates as true (ie. non-zero, non-blank, defined). The THEN clause contains either a
nested sub-policy, or a single string that specifies any number of action invocations separated by the token " AND ". The order of action invocations is
relevant, but the token " " is just a separator: all given actions in a will be executed regardless of success or failure of prior ones. All action AND THEN
invocations follow the same patterns: , or . The empty set of ()actionname argument . ()actionname subtype . ()actionname subtype argument
parentheses must not be omitted.

Policy evaluation starts at the outermost policy level, and proceeds in order of the numeric rule identifiers. All rules on the same nesting level are evaluated
one after the other, unless a successful rule has its BREAK option set to true: in this case the rules after the successful one are skipped. No BREAK option
present is interpreted as BREAK is false.

In the example above, rule 20 would be skipped if rule 10 succeeds, and policy evaluation would contine at rule 2. If rule 10's IF does not match, then
its BREAK option has no effect. If the expression of rule 1 doesn't match, then the sub-policy 10/20 isn't considered at all.IF

Action Policy Application and Timing

Normally all newly created events are subject to policy actions immediately after having been created, but this can be fine-tuned and adjusted:

No policy actions are performed for events with the property set to 1 or for events that are (already) acknowledged.action_checked
The former can be controlled by , the latter is mostly affected by the configuration options custom parser rules opevents_auto_acknowledge
and :opevents_auto_acknowledge_up
With auto-acknowledge enabled, a stateful down event is automatically acknowledged when the corresponding up event arrives. In that case, the
up event itself is also automatically acknowledged if and only if is set.opevents_auto_acknowledge_up
If the configuration option is set to true in , then no actions are performed on the opevents_no_action_on_flap conf/opCommon.json
down event that is involved in a , and the down event is acknowledged. This is the default behaviour.flap event
Policy action handling is delayed by seconds for all stateful events, so that state flaps can be detected before any actions state_flap_window
are performed.
Policy action handling is delayed for , if the event creation rule sets the property .synthetic events delayedaction

Supported Policy Actions

Action
Name

Description

log.logtype
()

Log the event to a file, as plain text or in JSON format

script.scri
()ptname

Execute a user-defined script, possibly capturing the output

escalate.p
olicyname
()

Mark this event for escalation using a particular escalation policy

email(cont
)actname

Email the event details to a particular contact

syslog.tar
(getserver

)prio

Send the event as Syslog message to a Syslog server,
optionally overriding the event priority

nmissyslo
g.targetse

()rver prio

Send the event as Syslog message to an NMIS Syslog server,
in the format expected by NMIS

priority(ad
)justment

Change the priority of the event
Adjustment can be a number between 0 and 10 for fixed assignment, or +number or -number for relative adjustment.

tag.tagna
()me value

Set a custom event property's value for static enrichment.
Tagname is the name of the property to modify and must be a single string without spaces. Values are not restricted.
(In the database the custom tag will be stored as "tag_ ", hence you cannot overwrite opEvents-internal properties with this action. tagname
As a consequence, if your policy has IFs that need a tag's value, then these need to reference the tag with the 'long form' "tag_ ".)tagname
In opEvents 2.0.2 and newer the tagname " " is special and .kb_topic controls linking to external data sources

acknowle
dge()

Acknowledges the event in question (which stops all escalation activity for the event). Supported in opEvents 2.0.3 and newer.

watchdog.
set(waitti

)me
watchdog.
disable()

Creates or updates a watchdog timer for the node associated with the current event. The timer is set to expire in seconds from waittime
now. If the timer is not disabled or updated before the expiration time, then a synthetic event named "Watchdog Timer expired" is
generated. Note that all four watchdog actions are disabled if the current event itself is a watchdog expiration event.

https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties
https://community.opmantek.com/display/opCommon/Common+Node+Properties
https://community.opmantek.com/display/opEvents/opEvents+input+sources
https://community.opmantek.com/display/opEvents/Deduplication+and+storm+control+in+opEvents
https://community.opmantek.com/display/opEvents/Event+Correlation
https://community.opmantek.com/display/opEvents/External+Enrichment+in+opEvents

element_
watchdog.
set(waitti

)me
element_
watchdog.
disable()

Similar to the previous, but for watchdog timers that are specific to both the node and the element (e.g. an interface) of the current event.
Element watchdog timers are independent of node watchdogs and of each other: Updating or disabling an element watchdog for say, eth1
doesn't affect a timer for for the same node.lo0

show_butt
on. ()value

Adds a tag to the buttons array for then event. You can use this to show different actionable buttons for different event types. See more at o
pEvents Programmable Button Actions

Notes for watchdog and element_watchdog

The watchdog timer system does require a priming event to establish the timer in the first place, and if a timer is disabled using it watchdog.disable()
is completely removed and forgotten.

The consequence of this design is that newly added nodes or elements are not subject to any watchdog timers until opEvent receives an event that causes
the watchdog creation. This is normally not a problem, unless such a new node is not creating events because it is down for example. To create watchdog
timers without or independent of an event, you can use facility.opeventd's command line event creation

Configuration for log.XYZ()

The section of controls the log types to be made available for actions. Here is an example:log conf/EventActions.json

"log" : {
 "tmp" : {
 "file" : "/tmp/opevents.log",
 "format" : "text",
 "mode" : "append"
 },
 "machinelog" : {
 "format" : "json",
 "dir" : "/tmp/opevents_json"
 }
 }

You can setup any number of log types; just make sure that your log. () action call uses the name of a defined log type.type

Two log formats are supported, and .text json

Text logs contain only the most essential event properties as a tab-delimited list, one event per line. If the argument is not present, then the log file is mode
overwritten every time the action is executed; the more common mode would be .append

JSON logs on the other hand contain all event properties, one event per JSON file. You have to give a option which specifies where those logfiles will dir
be created. The logfiles are named .json, timestamp being the UNIX timestamp and number being a running counter (the UNIX timestamp-number
timestamp has a one second granularity, number differentiates between multiple events in a single second).

Configuration for script.XYZ()

The script action lets you execute a program of your choice, and optionally captures and saves that program's output with the event. As usual, the section s
 of contains the required configuration directives:cript conf/EventActions.json

https://community.opmantek.com/display/opEvents/opEvents+Programmable+Button+Actions
https://community.opmantek.com/display/opEvents/opEvents+Programmable+Button+Actions
https://community.opmantek.com/display/opEvents/opEvents+input+sources

{
 "script" : {
 "traceroute_node" : {
 "exec" : "/bin/traceroute",
 "arguments" : "--max-hops=20 node.host",
 "output" : "save"
 },
 "future_proof" : {
 "max_tries" : 2,
 "output" : "save",
 "stderr" : "save",
 "exitcode" : "save",
 "exec" : [
 "/usr/local/bin/someprogram",
 "--first-fixed-arg",
 "no substitution happens here"
],
 "arguments" : [
 "event.node",
 "event.event",
 "--extra",
 "event.details"
]
 },
 "ping_node" : {
 "output" : "save",
 "exec" : "/bin/ping",
 "arguments" : "-c 5 node.host"
 }
 }
}

The path to the program file must be given in the option. Arguments can be passed to the program; simply add them to the option. Any exec arguments
tokens of the form or will be replaced by the named event or node property, respectively. If the option is set to , event.name node.name output save
then the output of the program execution is captured and saved with the event in question; otherwise the output is discarded.

Please Note:

opEvents versions up to 2.0.3 do not support long-running programs in script actions, and opeventsd until the action program terminates.blocks
From version 2.0.4 onwards, action handling is asynchronous and parallel, and the event status gets updated whenever processing of a script
script action completes.
Because of the asynchronous processing your action policy does not have access to any event properties.script.<scriptname>
Up to version 2.0.6, script actions are excuted using the system shell.

As a consequence you have to ensure your script are shell-safe, ie. that spaces are escaped or suitably quoted, that quotes arguments
line up and that the arguments do not contain unescaped shell metacharacters (",',`,!, &...).
The exit code of the external program is captured, only its output on STDOUT (and STDERR, unless the argument disposes of not exec
STDERR explicitely with a "2>..." construct).
Argument substitution for . and . may need to be disabled (if your arguments need to contain a verbatim "event.event name node name
sometext" string.
This can be done by escaping the "." with an (escaped) backslash. For example

 arguments => 'node.host event\\.event ...and other stuff to feed the program'

will cause the argument to contain the unsubstituted text 'event.event'. Node the use of single quotes.
Since the refresh of opEvents 2.0.6 on 2016-11-01, script actions are no longer executed using a shell, but directly by instead.opeventsd
This is much safer from a security perspective, and also generally faster.

It is (but not required) that you change your script configuration to use the new list format for (and), recommended arguments exec
as shown in the example above (see "future_proof").
If you use the list format, then each token is analysed for potential property substitution and then passed on to your program, separate
from all other tokens.
Spaces, backticks or other shell metacharacters are thus no longer problematic in an event or node property.
You can continue using the single-string or , but then opEvents will perform the necessary word-splitting and aarguments exec minimal
mendments for backwards-compatibility only:
If your string contains quoted tokens like , the surrounding double (or single) arguments "--some_program_arg=event.event"
quotes are stripped.
Please note that this is performed for quotes anywhere else in your arguments string. not
I.e. with an arguments string like , the single quote will be passed through to your program as-is.--weird_argument=don't
If you need to disable substitution (to pass in strings like "event.sometext" verbatim), escape the "." with a backslash.
As a much better alternative you can also put verbatim arguments in the list, because only the list is subject to exec arguments
substitution.

It is now possible to select whether the script exitcode should be captured and saved with the event.
This is enabled by default, unless you add => ' ' to your script configuration.exitcode false
It is now also possible to select which combination of STDOUT and STDERR output of a script should be captured and saved.
The config property covers STDOUT, the property STDERR. defaults to the value of , if not given output stderr stderr output
explicitly.
Adding " to your script arguments is no longer supported."2>&1
Should you absolutely require shell features in your script action, simply use as the and set the to your /bin/sh exec arguments
liking, but
please note that this is substantially less secure than direct execution if or substitutions are involved.event.X node.Y

opEvents version 2.2.2 and newer also supports the parameter which determines how often a failed script action may be retried; if max_tries ma
 is not set, then the default value 3 is used, i.e. up to three attempts to perform the action. Please note that action failure in this context x_tries

means a script exceeding the maximum configured runtime or opEvents encountering a problem with starting the script, but a script returning not
a nonzero exit code.
Make sure you double check the path to your executable if a script does not run. For example, the default location for ping_node is /bin/ping but
on some instances of linux it can be found in /usr/bin/ping. In this case, you would need to update the path to the ping command when you call it
in using the exec command.

Configuration for email()

The action email is different from the others in that its configuration is stored in separate files: sets the global email parameters, conf/opCommon.json c
 contains the definitions of contacts that opEvents should know about, and defines which onf/Contacts.json conf/EventEmails.json email

 to use for a particular contact.template

Here is an example section from :mail opCommon.json

"email" : {
 "mail_password" : "your_password", # auth is attempted if both user and password are set
 "mail_domain" : "example.com",
 "mail_use_tls" : "true", # use STARTTLS for encrypted smtp
 "mail_server" : "smtp.example.com",
 "mail_user" : "your_user_account@example.com",
 "mail_from" : "yourmailname@example.com",
 "mail_server_port" : 25 # 487 is another common choice
 },

At the very least you will have to set and to the appropriate values for your infrastructure; it is recommended that you mail_server mail_server_port
use so that emails (and username/password) are transmitted in encrypted form.mail_use_tls

If your mail server requires smtp authentication for sending email, then set and to suitable values; It is also highly likely that mail_user mail_password
you will need to adjust to a valid email address, which will be used as the sender's address.mail_from

The settings in are straight-forward and self-explanatory: a named contact section defines the name to use for the email action, and its Contacts.json E
 attribute assigns one or more email addresses to this contact (multiple addresses must be given as a comma-separated string). At the current time mail

opEvents uses only the part of .Email Contacts.json

Thus, to send event emails to contact with email address , you have to specify the action as , and add a contact section xyz abc@def.com email(xyz)
for (with email) to .xyz abc@... Contacts.json

Please note that before version 2.0.4 actions were handled synchronously and thus the events processing until the email delivery email blocked
concluded. In version 2.0.4 and newer this action is handled asynchronously in a separate process.

Configuration for syslog.XYZ() and nmissyslog.XYZ()

Actions that involve syslog servers require that contains a matching server definition in its section, similar to this conf/EventActions.json syslog
example:

'syslog' => {
 'server1' => {
 'facility' => 'local1',
 'server' => 'localhost',
 'protocol' => 'udp',
 'port' => '514',
 },
 'server2' => {
 'facility' => 'local1',
 'server' => 'weth',
 'protocol' => 'udp',
 'port' => '514',
 },
},

https://community.opmantek.com/display/opEvents/Email+templates+in+opEvents
https://community.opmantek.com/display/opEvents/Email+templates+in+opEvents

The definition has to include the name or address and the syslog to use; the number defaults to 514, and at this time opEvents server facility port
only supports syslog over udp .protocol

The syslog severity is computed from the event priority (see), or from the optional priority argument in opEvents priority levels vs. NMIS and Syslog levels
the action call (e.g.).syslog.someserver(7)

Configuration for escalate.XYZ()

Escalation of open issues is handled flexibly in opEvents: you can specify which events should be potentially escalated, and you can formulate different
policies for those escalations. Escalations in opEvents apply only to unacknowledged events.

Writing in a clause marks the matched event for future escalation according to the escalation rules of . An escalate.somepolicy() THEN somepolicy
event can be subject to multiple escalation policies at the same time. All escalation policies that an event is marked for will be applied independently, and
when a policy is unapplicable because of time and day restrictions, it is ignored - but only temporarily until the time and day match up again.

Only when an event is acknowledged does escalation for it cease. Events are normally acknowledged manually, but for stateful entities the "down" event is
acknowledged automatically if the configuration option is enabled in .opevents_auto_acknowledge conf/opCommon.json

Escalation Policies

To formulate an escalation policy, you need to decide on your preferred escalation steps, their respective time thresholds and actions, and express that in
section of the config file . Here is an example configuration fragment:escalate conf/EventActions.json

 "escalate" : {
 "afterhours" : {
 "name" : "afterhours",
 "7200" : "email(operations_manager)",
 "900" : "email(operations)",
 "3600" : "email(operations_pager)",
 "60" : "message.xmpp(operations) AND script.ping_node()",
 "IF" : {
 "begin" : "19:00",
 "priority" : ">= 5",
 "end" : "9:00",
 "days" : "Monday,Tuesday,Wednesday,Thursday,Friday"
 }
 },
 "weekday" : {
 "60" : "message.xmpp(operations) AND script.ping_node()",
 "IF" : {
 "priority" : ">= 0",
 "begin" : "9:00",
 "end" : "19:00",
 "days" : "Monday,Tuesday,Wednesday,Thursday,Friday"
 },
 "1200" : "email(operations_pager)",
 "2400" : "email(operations_manager)",
 "300" : "email(operations)",
 "3600" : "email(it_manager)",
 "name" : "weekday"
 },
 "weekend" : {
 "60" : "message.xmpp(operations) AND script.ping_node()",
 "IF" : {
 "days" : "Saturday,Sunday",
 "end" : "0:00",
 "begin" : "0:00",
 "priority" : ">= 5"
 },
 "7200" : "email(operations_manager)",
 "name" : "weekend",
 "900" : "email(operations)",
 "3600" : "email(operations_pager)"
 },
 "afterhours" : {
...

Your escalation policy clearly needs a name; the example uses and . The two other components of the escalation policy are the weekday afterhours IF
clause, which sets the scope of the policy, and the list of escalation steps.

https://community.opmantek.com/display/opEvents/opEvents+priority+levels+vs.+NMIS+and+Syslog+levels

Escalation Time and Priority Restrictions

The clause is used to determine whether a particular escalation policy should be active at a given time, and for events of a given priority.IF

The setting is required and contains a comparison operator, a space and a number. priority
If your policy is to be unrestricted simply use (range from 0 to 10).>= 0 event priorities

The setting is optional, and should contain a comma-separated list of weekdays when the policy should be active. If are not given, then the days days
policy works on all days.
The days must be given by their full names, ie. "Monday" or "Thursday".

The begin and properties set up the daily time range for this policy. No means "starts at midnight" and no is interpreted as "ends at end begin end
midnight".
The policy will be active in the interval between begin and end, if the begin time is earlier than end (like in the example above).
To invert the interval meaning, ie. for events the given (business) hours, simply swap begin and end over. For example, a policy with begin 18:00 outside
and end 05:00 will work after 18:00 and before 05:00.

All criteria must match for an escalation policy to be active.

Escalation Step Definition

The remaining components of the escalation policy are the definitions of the escalation steps; these consist of the escalation threshold, and the actions to
take. The escalation threshold (in seconds) specifies the minimum age of the unacknowledged event for this escalation step to activate, and the action part
works the same as the expression in the action policy.THEN

When escalations are processed, the highest new escalation step is determined based on the age of the event, the associated actions are performed and
the event state is updated. When escalations are processed next, only escalation steps higher than the most recently active one will be considered for this
event. Please note that different escalation polices are applied independently and each has its own active highest escalation step.

With the example policy above, an event would be acted upon after 60 unacknowledged seconds, then again once it reaches 300 weekday
unacknowledged seconds and so on. Each action would be taken at most once: if the policy becomes active for the first time if the event is already 5900
seconds unacknowledged, then only the highest escalation step (3600) would be applied.

The action part of the step definition has the same syntax and interpretation as the expressions of the main action policy described earlier in this THEN
document, except that action from within an escalation policy makes no sense and is therefore disabled.escalate.anypolicy()

https://community.opmantek.com/display/opEvents/opEvents+priority+levels+vs.+NMIS+and+Syslog+levels

	Event Actions and Escalation (opEvents 4)

