
Node Administration with opnode_admin
NOTE: This documentation is only relevant to Opmantek Products with NMIS8, when using NMIS9 node_admin.pl performs all necessary node
administration functions for NMIS, opConfig and opEvents.

For NMIS9 and op Modules

NMIS Node Administration Tools

Table of Contents

For NMIS9 and op Modules

Basic Operation
Node Listing, Viewing and Exporting
Node Updating

Relative updates, changing just a few properties
Absolute updates, setting all properties
Creation of Nodes

Node Renaming
Deleting Nodes

opConfig and opEvents provide a number of different methods for managing nodes, both GUI-based and commandline-oriented. This document describes
the commandline tool .opnode_admin.pl

Basic Operation
The tool is installed by default as . It is scriptable and pipelineable, and can perform all opnode_admin /usr/local/omk/bin/opnode_admin.pl
node-related operations: creation, updating, renaming, exporting and deletion of nodes.

Run the tool with no options or -? or -h and it'll display a simple help page:

/usr/local/nmis9/admin/opnode_admin.pl
Usage: opnode_admin.pl act=[action to take] [extras...]
 opnode_admin.pl act=list
 opnode_admin.pl act={create|export|update} node=nodeX
 opnode_admin.pl act=delete node=nodeX [deletedata=0/1]
 opnode_admin.pl act=show node=nodeX
 opnode_admin.pl act=set node=nodeX entry.propname=value...
 opnode_admin.pl act=mktemplate [placeholder=1/0]
 opnode_admin.pl act=rename old=nodeX new=nodeY
mktemplate: prints blank template for node creation,
 optionally with __REPLACE_XX__ placeholder
create: requires file=NewNodeDef.json
export: exports to file=someFile.json (or STDOUT if no file given)
update: updates existing node from file=someFile.json (or STDIN)
delete: only deletes if confirm=yes (in uppercase) is given
node events and config information are deleted only if deletedata
is 1 or true.
show: prints the nodes properties in the same format as set
set: adjust one or more node properties

Node Listing, Viewing and Exporting
Given the argument , will print a list of all known node names.act=list opnode_admin

Version 2.70.0 onwards prints its two lines of header only when displaying to a terminal; with older versions you'll have to exclude these lines if you want to
reuse the data.

To save a node's config information, run , and it'll print the node's configuration in admin/opnode_admin.pl act=export node=somenodename
JSON format to your console. If you want to save that data in a file, either add the argument . Here is an example of what to file= .jsonsomefilename
expect:

https://community.opmantek.com/display/NMIS/Node+Administration+Tools

./bin/opnode_admin.pl act=list
Node Names:
===========
bne-server1
bne-switch1
build
char-router1
...

To see a node's properties in a relatively human-friendly form you should use ; it'll present the properties in a 'dotted-path' notation, like this:act=show

./bin/opnode_admin.pl act=show node=mel-router1
entry.active=true
entry.activated.opConfig=1
entry.activated.opEvents=1
entry.customer=Sales
entry.group=Melbourne
entry.host=mel-router1
entry.nodeModel=CiscoRouter
entry.nodeType=router
entry.nodeVendor=Cisco Systems
entry.nodedown=false
entry.processorRam=99.61 Mb
entry.softwareImage=C1841-ADVENTERPRISEK9-M
entry.softwareVersion=12.4(25f)
entry.sysContact=default
...

Exporting all of a node's configuration (in JSON format) works like this, if you don't specify an output file to save the data in:

./bin/opnode_admin.pl act=export node=mel-router1
{
 "InstalledModems" : 0,
 "active" : "true",
 "addresses" : [],
 "customer" : "Sales",
 "depend" : "N/A",
 "group" : "Melbourne",
 "host" : "mel-router1",
 "host_addr" : "",
...

Node Updating
Naturally does not just export node data, but also consumes it for modifying a node in place and for creation of new nodes. There are two opnode_admin
modification operations: and :act=set act=update

act=set works best for adjusting a few individual properties.
Its advantage is that doesn't require a full export of the node data.
act=update works best for big modifications, and expects you to supply a complete node config in JSON format.

Relative updates, changing just a few properties

For example, to change a node's opConfig activation field to false (so that opConfig does not attempt to communicate with the node) you'd certainly use ac
, like this:t=set

./bin/opnode_admin.pl act=set node=mel-router1 entry.activated.opConfig=0
Successfully updated node "mel-router1"

Any number of arguments of the form can be given, and all identified properties will be updated in one entry.<propertypath>=<somevalue>
operation.

Please note that you cannot set authentication-related sensitive properties (like the snmp community, for example) using ; these opnode_admin act=set
are ignored and a warning is shown.

Absolute updates, setting all properties

To change all of a node's configuration (node renaming!), simply dump the node configuration with , then edit the exported data except act=export
suitably and finally perform the change with and the exported data as input. Both operation require that you give the node name in question, act=update
and both work either from files (with a argument), or via STDOUT/STDIN/pipeline.file= .jsonsomefile

For example, this pipelined invocation would change a node's misspelled group property:

./bin/opnode_admin.pl act=export node=mel-router1 | sed -e 's/WorngGroup/correctgroupvalue/' | ./bin
/opnode_admin.pl act=update node=mel-router1

You can also explicitely pass the argument to indicate that STDOUT should be used for export or STDIN be used for update/creation. Please note file=-
that the operation doesn't create new nodes or rename noes, and that it the whole set of node configuration settings with your new act=update replaces
configuration input.

Creation of Nodes

Node creation is triggered by the argument , which behaves mostly like , except that it doesn't touch existing nodes. To help you act=create act=update
with starting a node configuration document from scratch (or in a scripted fashion), there is another command, , which prints a blank but act=mktemplate
documented template which you can save and fill in. If you add to the command line, then fills the template with easily placeholder=1 opnode_admin
matchable replacement placeholders, like so:

./bin/opnode_admin.pl act=mktemplate placeholder=true
// Please see https://community.opmantek.com/display/opCommon/Common+Node+Properties for detailed descriptions
of the properties!
...lots more hopefully helpful comments
{
 "activated" : {
 "opAddress" : "__REPLACE_opAddress_ACTIVATION__",
...

This makes it very easy to fill in the template with a script or some other external tool.

Node Renaming
To rename nodes you should use which requires both old and new node names with arguments and , respectively. This operation act=rename old new
first changes the configured node name, and then adjusts most database entries related to the node in question:

If opEvents is installed and licensed, all existing events for the renamed node will be rewritten to refer to the new node name.
if opConfig is installed and licensed, then all existing command outputs for the renamed node will be updated to refer to the new node name.

Deleting Nodes
To remove a node (but not its historic data) simply run with the argument , plus the option opnode_admin act=delete node=ripnode confirm=YES
(must be uppercase) to make opnode_admin actually perform the deletion.

This removes only the node configuration information but not existing opEvents or opConfig data for the node.To delete these as well, you can add the
option to the command, and all data related to this node will be removed permanently.deletedata=1

	Node Administration with opnode_admin

