
Event Correlation
opEvents does not just automatically (stateful or custom-matched); it can also create new events based on correlating recent suppress duplicate events
event occurrences.
In versions 2.0.4 and newer you can use fine-grained controls to deal with the triggering events, and from version 2.2 onwards the contents of synthetic
events are configurable, too.

This page describes how to configure event correlation.

General Configuration
Grouping
Event Content and Enrichment

Content Control Directives (Version 2.2 and newer)
Automatic Event Node for Synthetic Events

Example Rule
Stateful Synthetic Events (Version 2.2 and newer)

Event Processing for Synthetic Events
Handling of the Triggering Events

"Plain" Synthetic Events
"Combination" Events

Synthetic Events and Storm Control
Inhibiting Correlation (Version 2.2 and newer)

General Configuration
This event correlation and synthesis feature is configured in the same way as the duplicate suppression, namely by putting event creation rules into conf

./EventRules.nmis

An event synthesis rule consists of:

an event , which specifies the name of the newly created event,name
a list of (more precisely, their names), which are the events to consider for correlation,events
a (minimum) of events that have to be detected to trigger the rule,count
an optional list of clauses, which define whether the count is interpreted globally for all named events, or separately within smaller groupby
groups,
optional and clauses, which define how the triggering events should be handled,delayedaction autoacknowledge
an optional clause, which adjusts the content of the newly created event,enrich
from version 2.2 onwards, optional , , and clauses which further control the contents of copy_first copy_last copy_highest copy_groupby
the newly created event,
from version 2.2 onwards, an optional parameter, which disables correlation temporarily after a rule has fired,inhibit
and finally a parameter, which defines the time window to examine.window

(If you compare suppression and synthesis rules closely, you'll see that the main difference is the lack of a clause for synthesis rules, whereas suppress
the suppression rules don't have or clauses.)enrich copy_*

Here is an example rule:

'3' => {
 name => 'Customer Outage',
 events => ["Node Down","SNMP Down"],
 window => '60',
 count=> 5,
 groupby=>['node.customer'], # count separately for every observed value of customer
 enrich=>{priority => 3, answer => 42}, # any such items gets inserted in the new event
},

This rule causes opEvents to look for Node Down and SNMP Down events in the last 60 seconds, separate them into per-customer groups (see grouping
below); if it counts 5 or more such events in a group, then a new event called Customer Outage is created.

Grouping
If no clause is present, then potential trigger events are selected solely by event name and event time (within the window), without any further groupby
scope limiting, i.e. globally across all nodes. For many common scenarios this may be too broad a selection; for example creating new events for a
particular customer or service group only wouldn't be possible.

Grouping solves this problem: the set of potential triggering events is split into groups with matching property values and the threshold is applied to count
those groups.

https://community.opmantek.com/display/opEvents/Deduplication+and+storm+control+in+opEvents

1.

2.

3.

4.

5.

6.

7.

8.
9.

The clause has the form of a list of or property specifications (e.g. or), which are used to groupby node.X event.Y node.customer node.group
group events into buckets for counting: only events that share the same values for all the listed grouping properties will be counted together.

For example, the clause would cause this correlation rule to be applied independently for all groupby ['node.customer', 'event.priority']
combinations of customer and event priority. The clause given in the example block above will create a Customer Outage event for any individual customer
with 5 outages in 60 seconds; without the any 5 outages anywhere would cause a synthetic event to be created.groupby

The clause can make use of all common node properties which and the standard event properties which are groupby are listed here documented on this
. Please note, however, that only event properties that were set during the event parsing stage are accessible when correlation is performed. For page

example can change an event (e.g. tagging, script execution) but policy actions are performed correlation.policy actions after

Event Content and Enrichment
Before opEvents version 2.2, synthetic events are always cloned from the most recent triggering event, then they get a new name from the synthesis rule
name, and finally any static clauses are evaluated. Synthetic events could be , i.e. they were not subject to deduplication and enrich not stateful events
could not be acknowledged (or 'closed') by any later 'opposite' event.

In version 2.2 this limitation has been removed, and much more precise control of the event content is possible.

Content Control Directives (Version 2.2 and newer)

When a synthesis rule creates a new event, the following steps are performed:

If no , , or directives are present, then a backwards-compatible copy_first copy_last copy_highest, copy_present copy_groupby
directive ' is added.copy_last => [qr//]'
(opEvents 2.2 and newer only) is evaluated first. It specifies which properties should be set .copy_present from their first occurrence
This rule must contain explicit property names only, i.e. no regular expressions.
opEvents checks all trigger events in chronological order, and when it finds an event that has a value for the desired property, it copies that value
over and stops looking for that property. Any later events that might have the property as well do not contribute to the result.
A rule like will pull the and properties from wherever they are present for the first copy_present => ['alpha', 'beta'] alpha beta
time, but independent of each other: a trigger event can contribute none, either or both properties.
copy_first is evaluated next, and specifies which event properties should be copied over from the earliest trigger event.
Each listed property is copied over; if the directive contains a regular expression (e.g. , then all properties with names matching the qr/cust.*/
regular expression are copied.
copy_last is checked next, and properties listed here are copied over from the .most recent trigger event
The property copying does overwrite all properties that were set earlier (by).copy_first
copy_highest is checked next, and its properties are sourced from the .trigger event with the highest priority
Again overwriting of properties may happen.
copy_groupby controls whether any of the grouping property values should be saved in the new event.
The format is different for this directive: It must be a list of property target names (or the word 'undef'), in the same order as the directive.groupby
For each element in the list, the value of the grouping property is saved as the target name in the new event, if a target name is groupby
available in the list.copy_groupby
If no is given for this rule, then a directive has no effect.groupby copy_groupby
Now the clause is checked, and each of its property name - value pairs indicates which properties should be set to (or overwritten with) enrich
a particular static value.
Now the , and properties are automatically adjusted if required (see below for details).node stateful element
Finally, the event name is set to the rule name, certain undesirable properties are removed, an audit trail of triggering events is added (by adding
the), the event is marked as and is inserted into the database.properties and nodes eventids synthetic

Please note that "earliest event" in step 2, 3 and 4 refers to the event with the earliest event timestamp, which does reflect its processing not necessarily
order. opEvents processes inputs mostly - but not always - in chronological order. If you have multiple 'earliest' events (all with the same timestamp) then
their order is undefined and will pick a random event. The same caveat applies for the "most recent event".copy_first

Automatic Event Node for Synthetic Events

If no or clause has caused the the property to be , then the global default node is used instead.copy_* enrich node set explicitly

'Set explicitly' means a or clause did include the property, i.e. if the node property copying happened because of a regular copy_* enrich node not
expression.

The global default node in opEvents 2.2 is configurable using the configuration item , and it's normally called "global".opevents_correlation_node
This virtual node is automatically (re)created if missing.

This behaviour is different from opEvents before 2.2, where all synthetic events were attached to the last trigger event's node. To emulate the old
behaviour you have to change your correlation rules, so that they include the directive

copy_last => [qr//, 'node']

which causes a blanket copy of all properties from the last trigger event and an explicit copy of the node property (to disable the automatic event node
choice).

Example Rule

https://community.opmantek.com/display/opCommon/Common+Node+Properties
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties
#
https://community.opmantek.com/display/opEvents/Deduplication+and+storm+control+in+opEvents
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties

1.

2.
3.

Here is an example rule demonstrating the new directives:

'1' => {
 name => "Very Sick Node",
 events => ["Node Down", "SNMP Down", "Interface Down", "Service Down",
 "Service Degraded", "Interface Flap", "Node Flap", "WMI Down"],
 window => 120,
 count => 3,
 groupby => ['node.name'], # we want separate events for each node of course
 enrich => { stateful => "Very Sick Node", priority => 5, state => 'down', element => undef }, # new event is
stateful only if stateful is set or copied by name
 copy_last => [qr//, 'node'], # can set from node here (all events share it)
 copy_groupby => ['node'], # or from here; must set it explicitely somewhere, or the event goes to
opevents_correlation_node
},

Stateful Synthetic Events (Version 2.2 and newer)

By default, synthetic events are , i.e. they are not subject to deduplication and they cannot be acknowledged (or 'closed') by any future not stateful events
'opposite' event.

However, in 2.2 and newer it is possible to enable stateful handling for synthetic events:

Your rule must set the property. explicitly stateful
Copying with a regular expression in does not meet this requirement, and a thusly copied property is deleted before event copy_* stateful
creation.
Your rule must ensure that a suitable property value is present.state
Your rule should ensure that a suitable property value is present, or opEvents will automatically create one from information element groupby
if that is available.
As described in the , the combination of , and properties must uniquely identify the documentation for Stateful Events node stateful element
stateful 'thing', and the value of the property describes the new state.state

The example rule above shows how a stateful 'very sick node' event can be created: the node name is set from the grouping criteria (i.e. all related triggers
share the same node name), the property is set with a static clause, and there is no , so at most one 'very sick node' stateful stateful enrich element
thing can exist for a single node.

If we wanted to acknowledge this event from a different correlation rule, we'd have to ensure that , and properties with the node stateful element
same value are generated, but the would have to be 'up' or 'closed' or 'ok'.state

Here is another example, for a group-level stateful event:

8 => {
 name=>'sick group',
 events=>["Service Down","SNMP Down", "Node Down"],
 groupby => ['node.group'],
 window=>150,
 count=>3,
 enrich => { stateful => "sick group", state => "down" }, # node will be opevents_correlation_node, element
will be group
 copy_last => [qr//],
},
9 => {
 name=>'happy group',
 events=>["Service Up", "some nice event"],
 groupby => ['node.group'],
 window=>300,
 count=>1,
 enrich => { stateful => "sick group", state => "up" },
 copy_last => [qr//],
},

Rule 8 specifies that three of the listed 'down' events in a single group should cause a new event that sets the 'sick group' state to down for this one group;
the property is auto-generated from the data, and all such events are attached to the virtual node 'global'. Any repeat 'sick group' element groupby
events would be statefully deduplicated. Because element is set to the group in question, every single group would have its own 'sick group' state.

As soon as a single positive event from the list in rule 9 arrives, the 'sick group' event is acknowledged and closed.

https://community.opmantek.com/display/opEvents/Deduplication+and+storm+control+in+opEvents
https://community.opmantek.com/display/opEvents/Deduplication+and+storm+control+in+opEvents

1.

2.

Event Processing for Synthetic Events
At this point the new event is inserted into the database, and is ready for further action processing. This action processing (e.g. escalation, mail
notification, custom logging) is performed immediately.

Handling of the Triggering Events

Please note that this feature is only available in opEvents 2.0.4 and newer.

If your rule contains a clause (with a numeric value), then all events will have their action processing delayedaction potentially triggering
delayed by the given number of seconds.
This affects whose name is in the event list of your rule, no matter whether the limits for triggering a synthetic event have been met or all events
not. The value should therefore be set to a relatively small value.delayaction
If your rule has the property set to or 1, then all triggering events will be automatically acknowledged and all action autoacknowledge "true"
processing for them will be aborted.

The combination of these two controlling properties provides fine-grained storm control and the ability to create "combination events" that subsume and
close any number of triggering events:

"Plain" Synthetic Events

If your rule sets neither nor , then the incoming potential trigger events will be processed as per normal and delayedaction autoacknowledge
immediately, and any policy actions for them will be taken as soon as possible (but possible after being delayed by the - see state_flap_window Dedupl

 for details). The trigger events are thus completed, and visible as current/unacknowledged, completely independent ication and storm control in opEvents
of any synthetic events that might get triggered by them later.

"Combination" Events

If your rule sets (and optionally), then the incoming events are delayed and held for the given time before any policy delayedaction autoacknowledge
actions are taken for them. (The setting should be the same as or larger than the rule's setting.)delayedaction window

If the requirements for a synthetic event are met during that time, then the new synthetic event can "combine" and supersede the triggering events. If auto
 is set, then all the triggering events will be acknowledged, closed and no actions will be taken for them at all. (Without acknowledge autoacknowledge

the triggering events would not have actions performed but would remain unacknowledged.)

The net effect is that the current events view would show only the new synthetic event as 'current' and all the underlying triggering events would be
categorized as closed (and optionally acknowledged), and thus be mostly hidden.

Synthetic Events and Storm Control
All synthesis rules are applied independently, thus a single event could be a trigger for multiple synthetic events. This is desirable for example for detecting
both per-customer problems and global issues at the same time: a few problem events can trigger a customer-specific action, while the same events could
be counted together with others for detecting and reacting to a major outage.

Great care has been taken to avoid event storms caused by synthetic events: When a synthesis rule fires because there were more than matching count
events in the time window, then all the matching events are marked as and will not be considered for any future synthesis In other consumed for this rule.
words, there is no overlap between successful synthesis time windows. If a rule does trigger because there are fewer than trigger events, then not count
naturally these events remain potential triggers until the time window moves past them.

However, synthetic event creation currently happens immediately as soon as a sufficient number of triggers are detected: assuming a trigger of a minimum
20 events in 60 seconds, receiving 100 events in that time frame will cause a new synthetic event for each of the 20 sufficient triggers.

Inhibiting Correlation (Version 2.2 and newer)

Version 2.2 provides a new capability for fine-tuning storm control: the timer.inhibit

If a correlation rule fires, and if that rule contains a numeric parameter greater than zero, then opEvents will temporarily disable the rule with its inhibit
particular context for that many seconds.groupby

The primary application of this feature is to stop 'nuisance' repeat synthetics if a very large number of triggers arrives in a very short time frame: it lets you
tell opEvents to generate of a particular event every seconds.at most one instance inhibit

Here is an example scenario: let's assume a rule for raising a 'Group Outage' event if 20 instances of a particular event are seen within a window of 60
seconds. A major outage happens, and 100 such trigger events for group A arrive within just a seconds, and a further 25 triggers for group B.

Without , after the first 20 events for group A you'll get one synthetic event for group A; another after the next 20 and so on. inhibit
For group B, one synthetic event will be generated for the first 20; the remaining 5 are too few to trigger anything.
With set to 40 seconds (for example), you'll get the very first group A synthetic event as before, but then no synthetic events for this rule inhibit
and group A for the next 40s;
After that correlation for group A resumes 'from scratch' and any events received from then onwards are counted and correlated as normal.
For group B with its fewer triggers the inhibit behaviour doesn't change anything visibly, there's still just one synthetic event.
Note that the inhibit timer for group A is totally independent of any inhibit for group B: inhibit applies to a particular rule and its full groupby
context.

https://community.opmantek.com/display/opEvents/Deduplication+and+storm+control+in+opEvents
https://community.opmantek.com/display/opEvents/Deduplication+and+storm+control+in+opEvents

In opEvents version 2.2, the combination of the options and does acknowledge trigger events that occur during the autoacknowledge inhibit not
inhibit period; only 'successful' triggers are acknowledged. This has been changed for greater consistency and better storm control in versions 2.2.1 and
newer, where successful triggers and any trigger events occurring during the inhibit period are also acknowledged automatically.

	Event Correlation

