
1.
2.
3.

Delegated Authentication

Overview
How does it work?
Configuration
Generating a Token
Logging in with a Token
Using the token based authentication in the header
Token Content and Interoperability Notes
Limitations
Code Examples for Token Generation

Perl
Shell using the OpenSSL CLI
Python

Overview
Opmantek Applications released after 22 Feb 2017 support a new authentication method called , which offers delegated authentication: an external token
party can pre-authenticate a user, who can access the Opmantek applications without having to log in with username and password.

How does it work?
The core idea is broadly similar to : the Opmantek application and the external party share a cryptographic key, and thus a trust relationship is Kerberos
established. When the external party is satisfied that a user should be (pre-)authenticated for Opmantek apps, then it uses that shared key to create a
'token' or 'ticket', which the user can present to the Opmantek application in lieu of logging in interactively; if the ticket verifies as valid, the Opmantek
application accepts the user as authenticated and logged in.

Configuration
To enable token authentication, a few configuration settings must be added to for legacy modules or /usr/local/omk/conf/opCommon.nmis /usr

 for current:/local/omk/conf/opCommon.json

One or more shared keys must be set up in ,auth_token_key
optionally, the maximum validity for tokens may be specified in ,auth_token_maxage
and finally, the authentication method must be added as one of the three supported authentication methods.token

Once these changes are made, the Opmantek daemon must be restarted () to activate them.sudo service omkd restart

Here is an example snippet, showing just the relevant items:opCommon.nmis

'authentication' => {
skipped other stuff...
 'auth_method_1' => 'token',
 'auth_method_2' => 'htpasswd',
 'auth_method_3' => '',
 'auth_token_key' => ['whateverSuitsU!', 'ForAnotherTrustedTP',],
 'auth_token_maxage' => 100,

The list specifies which shared keys should be accepted and tried in sequence. Setting just one key is ok. If you have multiple external auth_token_key
parties that you want to delegate authentication duties to, then it is recommended that you give each their own key.

The setting must be a positive number, and defines how long a token remains valid after creation (in seconds). If not present, the auth_token_maxage
default of 300 seconds is used.

The authentication method is active if and only if one of the , 2 or 3 entries is set to . Please note that it is not relevant token auth_method_1 token
which of the three is set to token; the method is ignored when the normal username and password login form is used, and conversely the other token
methods are ignored if the token access URL is visited (see next section).

Generating a Token
Opmantek applications released after May 2017 ship with a small token generator helper in (and /usr/local/omk/bin/generate_auth_token.pl
also compiled into a standalone program, in the same location)..exe

https://en.wikipedia.org/wiki/Kerberos_protocol

This token generator must be passed the shared key to use, and the username to generate a token for. The encrypted token is created with and for that
username and contains the current time (in UTC). Finally, the generator prints the resulting token, as in the following example:

$ /usr/local/omk/bin/generate_auth_token.pl 'whateverSuitsU!' operator
53616c7465645f5fd95eadb039692ea599441f8089daf1d7f04ab9ccf479e37fb3afda85b3044f4cde5b15844e9be616

Token length varies depending on the username, and each execution does create a different token. Please note that if your shared key contains shell
metacharacters (like "!" in the example above) you will have to quote them with single quotes when passing them to the token generator.

Logging in with a Token
To use a token with an Opmantek application, the token generating party should direct the user to a URL in the following format: http://<yourserver>

. /omk/<applicationkey>/login/<token>

As a concrete example, to access opCharts with the token from before we'd use
https://testsystem1.opmantek.com/omk/opCharts/login
/53616c7465645f5fd95eadb039692ea599441f8089daf1d7f04ab9ccf479e37fb3afda85b3044f4cde5b15844e9be616

If your system is configured for secure HTTP then it's fine to use . Token authentication works for all commercial Opmantek applications (e.g. https://
application keys , and so on).opEvents opConfig

When the user accesses this URL using their browser, the authentication subsystem detects the presence of a token and attempts to verify it. If a suitable
shared key was configured on the receiving system, and if the token could be decrypted and is not too old, then authentication succeeds, suitable cookies
are created and returned, and the user is redirected to the main page for the given application.
If the token is invalid, the user is shown the classic login form, with a suitable error message.

If you need to direct the user to a particular page rather than their Default page/Dashboard you can extend the authentication URL with "?redirect_url=" for
example with the token above we can direct someone directly to the topn page as follows:

https://testsystem1.opmantek.com/omk/opCharts/login
/53616c7465645f5fd95eadb039692ea599441f8089daf1d7f04ab9ccf479e37fb3afda85b3044f4cde5b15844e9be616?redirect_url=
/omk/opCharts/topn

Once the client has accessed the first page, they have been issued auth cookies and all standard URLs work without the token string in the URL. You will
want to consider how the user is handled to re-authenticate them if the session expires.

Using the token based authentication in the header
We can make API requests against the Opmantek product by passing your generated token within the header of your request.

Authorization: Token <data>

Token Content and Interoperability Notes
The "payload" data of the token consists of

the current time (in UNIX seconds since 1970, timezone UTC) as a string (e.g. "1487738312")
a single space character,
and the respective username (which must contain printable ascii characters only; e.g. "nmis" or "john doe").

This data is then encrypted symmetrically using the shared key, with the following parameters:

AES with 128-bit key size in CBC mode,
block-padded to the normal 128-bit block size using the standard ,PKCS#5 padding format
with OpenSSL-compatible salted header format,
and using an password -based key and IV derivation function (PBKDF).OpenSSL-compatible
Please note that the shared is used as passphrase to derive the actual key, not as a literal binary 128-bit key.auth_token_key

The resulting encrypted data is binary, and must be encoded for use as a URL component.
The encoding is a trivial hex-encoding: each binary byte is replaced by its representation as two hexadecimal digits.

Limitations
The token authentication system does not support locking out users after N unsuccessful login attempts.

http://PKCS#5 padding format
https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html

As the token contains the current time at the creating system and is valid for a limited time only, reasonably precise time synchronisation is critical
for this method to work.
If a token could be decrypted but was rejected because it was deemed too old, then a suitable log entry is written to the .auth.log
Tokens are not single-use: a token works any number of times as long as it is presented within the configured validity period.

Code Examples for Token Generation

Perl

The following block contains essentially the same code as the token generator shipped as :bin/generate_auth_token.pl

#!/usr/bin/perl
use strict;
use Crypt::CBC;

my ($key, $username, $tokentime) = @ARGV;
die "Usage: $0 <key> <username> [timestamp]
key: passphrase of arbitrary length.
timestamp: optional, default: now\n"
 if (!$key or !$username or (defined $tokentime && !int($tokentime)));
$tokentime ||= time;

what goes into the token? the token time stamp (in unix-seconds, UTC),
as a plain string, followed by exactly one space and the username.
my $plain = $tokentime." ".$username;

defaults: RFC2898/pkcs#5 padding, openssl-compatible salted header mode,
and openssl-compatible key derivation function (PBKDF) -
see https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html
but crypt::cbc's default keysize is an incompatible 64 bits
my $engine = Crypt::CBC->new(-key => $key,
 -cipher => "Rijndael",
 -keysize => 128/8);
my $crypted = $engine->encrypt_hex($plain);

print $crypted,"\n";
exit 0;

Shell using the OpenSSL CLI

The following small shell script requires the command line tool and to perform the token generation (with the key being the first openssl hexdump
argument, username second):

#!/bin/sh
KEY=$1
USER=$2
TEMPFILE=`mktemp /tmp/gentoken.XXXXXX`
NOW=`date +%s`
echo -n "$NOW $USER" > $TEMPFILE
see man enc: -salt -e are default, could be omitted;
openssl requires a real file as input, so we need a temp file
hexdump converts the binary bytes into their hex representation
openssl aes-128-cbc -in $TEMPFILE -salt -e -pass "pass:$KEY" | \
 hexdump -v -e '/1 "%02x"'
echo
rm -f $TEMPFILE
exit 0

Python

Python's pycrypto module should contain everything required, except the OpenSSL-specific PBKDF which can be found .here

https://stackoverflow.com/questions/16761458/how-to-decrypt-openssl-aes-encrypted-files-in-python

	Delegated Authentication

