
Custom Tables in NMIS

Introduction
Prerequisites
Custom Tables in NMIS

What are NMIS Tables?
Typical Tables used in NMIS

Table Configuration
Display Options
Validation Options (8.6.2G and newer)

Management of Tables
Adding a New Table to NMIS
Create a Table Configuration
Add the table to Tables.nmis
Create permissions in Access.nmis
View the Table and Add Something

Linking Data Between Tables
Troubleshooting
Feedback

Introduction
While working with customers who wanted to extend NMIS and make it even more of a Network Management System (e.g. to support parts of their
operational processes and integrate more closely with their ITIL service management processes), we found that it could become difficult for them to
maintain the customisations of the extended data collection. To better support NMIS users we have simplified the way "Tables" in NMIS are defined and
extended as well as how they are shown in the Menus.

This article will briefly describe how this capability works and how it supports operational agility.

Prerequisites
NMIS version 8.3.18G or newer for custom tables
NMIS version 8.6.2G or newer for input validation
Shell access to the NMIS server and suitable user privileges to edit the NMIS configuration files
(which usually means being a member of the group "nmis" or having root privileges)

Custom Tables in NMIS

What are NMIS Tables?

To use NMIS various data is required, this data represents various policies, configuration, credentials or a combination of all of those. In the past NMIS
users have added tables as they needed, this required some Perl coding. To support faster and more easily modified tables in NMIS the table definitions
are now defined outside of the code base, making the tables themselves configuration items. So like the chicken and the egg, you need to start with
something.

Typical Tables used in NMIS

The following tables are used in NMIS internally:
(Note that this also includes the 'meta-table' , which defines what other tables NMIS presents, to allow dynamic definition of tables.)Tables.nmis

File Description

Access.nmis Access levels for Authorisation System

BusinessServices.nmis A list of Business Services to link to a node.

Contacts.nmis Contacts information used for notifications.

Enterprise.nmis List of “vendors” SNMP OID prefixes

Escalations.nmis Escalation policy, how notifications will happen

Links.nmis List of Links in the network.

Locations.nmis List of Locations

Logs.nmis Log viewer configuration file

Modules.nmis Opmantek modules integration

Nodes.nmis Main NMIS8 Nodes file

Outage.nmis Current planned outages (deprecated in 8.6.2G)

Portal.nmis Portal configuration for internal integrations

PrivMap.nmis Privilege mappings for authorisation

Services.nmis Services configuration file

ServiceStatus.nmis The definition of the Service Status's for NMIS (production, pre-production, etc)

Toolset.nmis External tools configuration file

Tables.nmis The list of Tables in NMIS

Users.nmis Users authorisation mappings

ifTypes.nmis List of standard interface types from IANA

Config.nmis 8.6.2G and newer: the main configuration file is now treated as a table,
with validation and customisation features like the others.

Table Configuration
For each known type of table there is a "table configuration" file, all of which are named (e.g. for table separate Table-<yourtable>.nmis Users.

 the configuration file is called).nmis Table-Users.nmis
Both the actual tables and their configuration files live in the directory, ie. conf /usr/local/nmis8/conf.

These table configuration files consist of declaration stanzas and little bits of code, which is evaluated at run time.

Let's look at an example; this is what "Table-SampleTable.nmis" could look like:

%hash = (
 SampleTable => [
 { Email => { header => 'Email Address', display => 'key,header,text', value => [""] }},
 { Name => { header => 'Name', display => 'header,text', value => [""] }},
 { Age => { header => 'Age', display => 'header,text', value => [""],
 validate => { "int" => [0, undef] }}},
 { Married => { header => 'Married', display => 'popup', value => ["true", "false"] }},
 { Children => { header => 'Children', display => 'popup', value => [0,1,2,3,4,5,6,7,8,9,10,11,12,"Many"] }},
]
);

SampleTable => [Is the name of the table, this should match the name, e.g. Table- .nmisSampleTable

{

 Email => {

 header => 'Email
Address',

 display => 'key,
header,text',

 value => [""]

 }

},

Each Column in the table is defined with an entry like this. In this case the column is called Email

To define each column necessary fields are:

header - is the what will be displayed when the table is viewed.
display - header indicates if it should be in the header or not, and text indicates what sort of input box to use. T
his includes the work key if it is to be included as the primary key.
value - what is the default value or select list.

{

 Married => {

 header =>
'Married',

 display =>
'popup',

 value =>
["true", "false"]

 }

},

This field would not be displayed as a textbox in the main view but instead would contain a select list (drop down) to
select true or false from.

Display Options

Display controls how the field from the table configuration will be displayed and where it will be displayed, it is a comma separated list of values as shown
in the examples above.

Possible values for display are:

Value Description NMIS
Version

header If the value "header" is present, the field will be displayed when viewing the table. All fields are visible when editing an entry. NMIS 8.1.1

key This value is to be used as a key value, if multiple key values are defined, they will be combined together to make the key of
the record.

It is recommended to use a single value for a key value.

NMIS 8.1.1

readonly A readonly field will not be editable, which means it must be added automatically as in the case of something like a UUID or
edited from Unix.

NMIS 8.3.19
G

text The standard field is a "text" field, this is equivalent to a HTML "input" form element. NMIS 8.1.1

textbox A text box being a little larger higher, this is equivalent to a HTML "textarea" form element. NMIS 8.3.19
G

popup A single value select box, this is equivalent to a HTML "select" form element. NMIS 8.1.1

scrolling A multiple select box, where you can select one or more values. This is equivalent to a HTML "select" form element with the
attribute of "multiple" set to "multiple".

NMIS 8.1.1

Validation Options (8.6.2G and newer)

From NMIS version 8.6.2G onwards, a basic data validation mechanism is available for all NMIS tables. Not all properties are setup for validation yet, but
the most critical ones are validation-enabled.

Validation is specificed by including a section in your property definition, e.g. for in the example above. A validation section can contain at validate Age
most one rule for each supported validation type, but usually will contain just one rule altogether.

Validation
Type

Arguments Description Example

int [min, max] The property value must be an integer.
If min is set, the property must be equal to or greater than the min.
If max is set, the property must be less than or equal to the max.
If min or max is set to , then no limiting is enforcedundef

between 0 and 50, incl: 'int' => [0, 50]
non-negative integer: 'int' => [0, undef]

int-or-
empty

[min, max] Available in NMIS 8.6.3G and newer.

Like except that an empty input is also accepted; this type is useful for int
properties that have global defaults.

float [min, max,
above, below]

The property value must be a floating point number
min and max work the same as for . int
above sets an lower limit: the property must be strictly greater than exclusive
above.
below sets an upper limit.exclusive

Any criteria set to are skipped.undef

between 0 and 1, incl: 'float' => [0, 1, undef, undef]
greater than 0.1: [undef, undef, 0.1, undef]

1.
2.
3.
4.

float-or-
empty

[min, max,
above, below]

Available in NMIS 8.6.3G and newer.

Like except that an empty input is also accepted; this type is useful for float
properties that have global defaults.

regex a Perl regular
expression
given in qr/.

 format.../

The property value must be matched by the regular expression. a blank string or a +HH:MM/-HH:MM timezone:
'regex' => qr/^([+-]?\d{1,2}(:\d{1,2})?)?$/

regex-or-
empty

a Perl regular
expression
given in qr/.

 format.../

Available in NMIS 8.6.7G and newer.

The property value must either be empty or match the given regular expression.

ip [acceptable
IP versions]

The property must be a valid IP address.
The rule argument sets which IP versions are acceptable; it can contain 4, 6 or
both.

any IP address: 'ip' => [4, 6]
an IP V4 address: 'ip' => [4]

resolvable [acceptabe
IP versions]

The property must be either a valid IP address, or it must be resolvable to a valid
IP address (at the time of validation).
Resolving is performed using the normal system mechanisms, ie. whatever
combination of DNS and /etc/hosts is setup using .nsswitch

something with an IP V4 address:
'resolvable' => [4]
something that resolves to an IP address:
'resolvable' => [4, 6]

onefromlist [list of
acceptable
values]
or undef

The property value must be one of the given explicit values, or one of the default
display values if no values are given in this rule.

exactly one of the values that was presented
visually using : 'onefromlist' => undefvalue
one of these: 'onefromlist' => ['yes', 'no', 'maybe']

multifroml
ist

[list of
acceptable
values]
or undef

Like , but accepts multiple values from the accepted list. No onefromlist
values whatsoever does satisfy this validation rule.

zero or more of the presented values:
'multifromlist' => undef
zero or more of these values:
'multifromlist' => [1, 2, 3, 4, 'OMGitsfulllofstars']

Management of Tables

Adding a New Table to NMIS

The following steps are required to add a new table:

Create a table configuration
Add the table to Tables.nmis
Create permissions in Access.nmis
Link to any other data

Create a Table Configuration

Create a file in /usr/local/nmis8/conf/, in our case /usr/local/nmis8/conf/Table-SampleTable.nmis, and add the appropriate configuration.

Add the table to Tables.nmis

Using the GUI or from the Unix prompt add the new table to Tables.nmis.

To add using GUI, access the menu item "System -> System Configuration -> Tables", a dialog will appear, and click on "add" next "Action >" in the top
right of the widget.

Enter the properties for the table, the "Table Name" must match the name in the "Table Configuration", in our case SampleTable, the "Display Name" is
what you want it to appear in the menu, and Description helps you remember what the table is for.

Refresh the NMIS Dashboard and your new table will exist in the menu but you will not be able to access it yet because there are no permissions defined
for the table.

Create permissions in Access.nmis

You need to tell NMIS what Access permissions to add this with, we have created a script to add the tables with the default permissions which is as
described in the table below, the command to run to add the permissions is.

/usr/local/nmis8/admin/add_table_auth.pl SampleTable

You should get some output like this:

Checking NMIS Authorisation for SampleTable
INFO: Authorisation NOT defined for SampleTable RW Access, ADDING IT NOW
INFO: Authorisation NOT defined for SampleTable View Access, ADDING IT NOW

The script can be run multiple times, it will not add the table twice.

The following table is the default permissions your table will be added with, if you want to change them, you can do that through the Access menu item
at "System -> System Configuration -> Access Policy".

Level Privilege View Read/Write

level0 administrator Yes Yes

level1 manager Yes Yes

level2 engineer Yes Yes

level3 operator Yes No

level4 guest No No

level5 anonymous No No

level6 security No No

* This step is intentionally done using the Unix shell, as we want to ensure that people adding privileges are truly NMIS admins and not someone sneaking
up and using a browser window.

View the Table and Add Something

If you haven't already, refresh the NMIS Dashboard and access the new table through the menu, in this example "System -> System
Configuration -> Sample Table". It will likely have an error message like "Error on loading table SampleTable" this is
because there was not data.

So lets add some data, and the file will be created for us automatically.

Click on Add to save it and view the Table.

Linking Data Between Tables
Creating new tables isn't that thrilling but if we could start linking data between them, e.g. a select (drop down) in the Nodes table could contain information
from a new custom table, then we would have a much more useful system for adding properties. Custom tables allow us to do this, as an example lets
add a look up (displayed as a drop down) to our SampleTable called "Business Service".

To add a "Business Service" to our Sample table we will need to edit the Table Configuration and add some additional code to use the NMIS API (for
looking up the values for "Business Service".

use NMIS;
use Auth;
my $C = loadConfTable();
variables used for the security mods
my $AU = Auth->new(conf => $C); # Auth::new will reap init values from NMIS::config
Calling program needs to do auth, then set the ENVIRONMENT before this is called.
$AU->SetUser($ENV{'NMIS_USER'});

%hash = (
 SampleTable => [
 { Email => { header => 'Email Address', display => 'key,header,text', value => [""] }},
 { Name => { header => 'Name', display => 'header,text', value => [""] }},
 { Age => { header => 'Age', display => 'header,text', value => [""] }},
 { Married => { header => 'Married', display => 'popup',value => ["true", "false"] }},
 { businessService => { header => 'Business Service', display => 'header,pop', value => [sort keys %
{loadGenericTable('BusinessServices')}] }},
]
);

These lines setup the NMIS API

use NMIS;
use Auth;
my $C = loadConfTable();
variables used for the security mods
my $AU = Auth->new(conf => $C); # Auth::new will reap init values from NMIS::config
Calling program needs to do auth, then set the ENVIRONMENT before this is called.
$AU->SetUser($ENV{'NMIS_USER'});

Then this line added to the %hash section gives up the lookup value. loadGenericTable('TableName') is what grabs the values to be
displayed in the drop down for us..

 { businessService => { header => 'Business Service',display => 'header,pop',value => [sort keys %
{loadGenericTable('BusinessServices')}] }},

Refresh our widget and you will see the new empty value.

Edit that record and you can see a select box made up of the linked data.

Yes it really is that easy.

Troubleshooting
If you want to troubleshoot what is happening with a table when it is not working, you can look in the nmis log file, which is /usr/local/nmis8/logs/nmis.log,
for example, refresh the table and then using the log tool select "NMIS_Log", or from unix "tail -50 /usr/local/nmis8/logs/nmis.log".

You might see an error like below, this is a Perl error and can be read the same way as reading a Perl compile or runtime error. Everything after the

is the error. The information before the
 includes the callstack.

16-Mar-2013 13:48:26,tables.pl::loadCfgTable#140NMIS::loadGenericTable#293NMIS::loadFileOrDBTable#288func::
loadTable#869func::readFiletoHash#976
ERROR convert /usr/local/nmis8/conf/Table-Nodes.nmis to hash table,
Global symbol "$example" requires explicit package name at (eval 46) line 34, <$handle> line 70.

In this example 'Global symbol "$example" requires explicit package name at (eval 46) line 34' is saying there is a compile time error at line 46 of the
evaluated code, in this case the variable $example has not been declared inline with Perl "strict".

The callstack looks like this:

NMIS::loadGenericTable (line 293)
 called: NMIS::loadFileOrDBTable (line 288)
 called: func::loadTable (line 869)
 called: func::readFiletoHash (line 976)

Feedback
We would love you get your feedback, please let us know if you had any problems or would like more information at contact@opmantek.com

	Custom Tables in NMIS

