
Modelling MIBS that use Indexes using the systemHealth
section

Introduction
Model.nmis file

sys section
How this information looks like?
rrd section

Common-database.nmis file
Conclusion

Introduction

Often a section of data that is useful to have displayed in NMIS is presented in SNMP as a table. In order to model this NMIS modelling supports a
"systemHealth" section that allows indexing to be used.

The net-snmp model has a section called "diskIOTable" which is an example of how to use the indexed modelling features of NMIS.

Model.nmis file

The systemHealth section is a "top-level" section which means it does not sit inside another section.

%hash = (
-- SNIP --
 'systemHealth' => {
 'sections' => 'diskIOTable',
 'sys' => {
 'diskIOTable' => {
 'indexed' => 'diskIOIndex',
 'headers' => 'diskIODevice',
 'snmp' => {
 'diskIOIndex' => {
 'oid' => 'diskIOIndex',
 'title' => 'IO Device Index'
 },
 'diskIODevice' => {
 'oid' => 'diskIODevice',
 'title' => 'IO Device Name'
 },
 -- SNIP --
 }
 },
 'rrd' => {
 'diskIOTable' => {
 'control' => 'CVAR=diskIODevice;$CVAR =~ /sda|sr|disk|xvda|dm\-/',
 'indexed' => 'true',
 'graphtype' => 'diskio-rw,diskio-rwbytes',
 'snmp' => {
 -- SNIP --
 }
 }
 }
 },
-- SNIP --
);

At the top of the systemHealth section a "sections" key tells NMIS which sections to display in the GUI (along the top column of links while viewing the
node). This name must match the name of the section below.

In this example "diskIOTable" is used,

sys section

In the above code snippet there is a 'sys' section, this is where data that will be stored in the -node.nmis file is defined. This is also where data Nodename
that is needed for gathering the RRD section is defined. If you want to see the latest value gathered by NMIS for these MIBS check the -node.Nodename
nmis file for your node. The values defined inside the snmp section are like any other part of the model.

1.

2.

1.

2.

3.

The sys->diskIOTable section specifies 2 keys:

indexed => 'diskIOIndex'
This tells NMIS that the OID diskIOIndex will hold the index value to loop on.
headers => 'diskIODevice'
This tells NMIS that when displaying the indexes, a column for diskIODevice should be shown. If the headers directive lists more than one key,
then all the corresponding columns will be present; in the example above we could have included the diskIOIndex column, too (but the device
name is more useful in this case).

NMIS versions before 8.4.8 require that you list the OID name-to-raw-oid association in ; for the example above entries for mibs/nmis_mibs.oid
diskIODevice and diskIOIndex would be required. To simplify the modelling process, 8.4.8 and later also support the key which lets you index_oid
associate a raw oid with a name in one model file. Using that the example would look like this:

'sys' => {
 'diskIOTable' => {
 'indexed' => 'diskIOIndex',
 'index_oid' => '1.3.6.1.4.1.2021.13.15.1.1.1',
...

Another new feature in 8.4.8 is , which allows multi-element indexing: normally SNMP tables are indexed by the last, single numeric OID index_regex
component. When NMIS does an update on a indexed entity, it iterates through all the known values for this index component and records them. This
iteration does not work if the index consists of more than one number, as it does on certain equipment. In such cases you can set to a value index_regex
that captures the OID components that vary between table elements. For example,

'index_regex' => '\.(\d+\.\d+\.\d+)$',

ensures that the last three numbers are used for indexing.

How this information looks like?

The OID 1.3.6.1.4.1.2021.13.15.1.1.1 is defined as follows in the mibs:

diskIOIndex OBJECT-TYPE
 SYNTAX Integer32 (0..65535)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Reference index for each observed device."
 ::= { diskIOEntry 1 }

Doing a snmpwalk

snmpwalk -c COMMUNITY -v 2c localhost 1.3.6.1.4.1.2021.13.15.1.1:

1.3.6.1.4.1.2021.13.15.1.1.1.1 = INTEGER: 1
1.3.6.1.4.1.2021.13.15.1.1.1.2 = INTEGER: 2
1.3.6.1.4.1.2021.13.15.1.1.1.3 = INTEGER: 3
1.3.6.1.4.1.2021.13.15.1.1.2.1 = STRING: "fd0"
1.3.6.1.4.1.2021.13.15.1.1.2.2 = STRING: "sdb"
1.3.6.1.4.1.2021.13.15.1.1.2.3 = STRING: "sda"

So, in this case, 1.3.6.1.4.1.2021.13.15.1.1.1 is the index OID, and by default, it will use the last digit (By default) as the index, 1, 2 & 3 in the example:

1.3.6.1.4.1.2021.13.15.1.1.1.1, 1.3.6.1.4.1.2021.13.15.1.1.1.2

rrd section

The rrd section defines what data will be collected and stored into rrd's. Once again, the values defined inside the snmp section are like any other part of
the model.

The rrd->diskIOTable section specifies 3 keys:

'control' => 'CVAR=diskIODevice;$CVAR =~ /sda|sr|disk|xvda|dm\-/',
This tells NMIS that the OID diskIODevice should be checked and only capture the values into RRD if they match the regular expression given.
Please see the page for further info on custom variables.Advanced Modelling: When a single SNMP variable isn't enough
indexed => 'true',
Tell NMIS this is an indexed table, it will then go and use the index specified in the sys section above to iterate

https://community.opmantek.com/display/NMIS/Advanced+Modelling%3A+When+a+single+SNMP+variable+isn%27t+enough

3. graphtype => ''
what graph-types will this rrd section create data for

Common-database.nmis file

The name of the rrd file is specified in this file. You will want a new set of files for your new section, to do that simply add a new line

'diskIOTable' => '/health/$nodeType/$node-diskiotable-$index.rrd',

As you can see, the file name has $index in the name so NMIS will create a new file for each index that it is gathering

Conclusion

NMIS should now be displaying a new section in the node view along with any graphs you have added in this section.

Also note, alerts can also be set on your new section, see for more info! this documentation page

As always, remember that you can compile your model file to check for syntax errors as well as run updates and collects with "model=true" (and generally
without debug=true) to see what NMIS is gathering.

https://community.opmantek.com/display/NMIS/Alerts+-+Using+models+to+generate+custom+events

	Modelling MIBS that use Indexes using the systemHealth section

