
NMIS 9 Administration Notes

Overview of the Major Components of NMIS9
The NMIS9 daemon bin/nmisd
The primary CLI tool bin/nmis-cli
The Node administration CLI tool admin/node_admin.pl
The GUI
The Database

Interacting with the daemon directly
Job Scheduling in NMIS9

Priorities
Periodically Scheduled Jobs
Node Activity Scheduling

Running Collect and Update Jobs Manually
Fault-recovery
Parameters to prevent the queue getting too big

Interacting with the daemon using nmis-cli
Process Status
Queue Status
How to delete Queued Jobs or abort Active Jobs
Manual Scheduling of Jobs
Administrative and Other CLI Operations
Performance data

Logging and Verbosity
Standard Log Files
What gets logged?
Per-job verbosity and custom log file
Adjusting process verbosity levels on the fly

Overview of the Major Components of NMIS9
**starting directory is "/usr/local/nmis9" for the following examples below **

The NMIS9 daemon bin/nmisd

In NMIS9 almost all work is controlled, scheduled and executed by the nmis daemon and its worker child processes.

The nmis daemon is controllable using the typical interface with the service name being "nmis9d"; e.g. .service sudo service nmis9d restart
The daemon should be running by the end of the initial NMIS9 installation.

The primary CLI tool bin/nmis-cli

The nmis-cli tool is your primary tool to interact NMIS on the command line; e.g. for querying the status of the nmis daemons, for scheduling new
operations and for scheduling outages.
Besides these administrative duties the cli tool is currently the only entity that can create saved reports (which is scheduled using a minimal NMIS 9 cron
job).

The Node administration CLI tool admin/node_admin.pl

Like with NMIS8, in NMIS9 nodes can be administered using the GUI or with the node_admin cli tool. NMIS9's version has a few extra features over
NMIS8's but otherwise doesn't differ excessively.
The node admin tool is described in more detail on the page.Node Administration Tools

Because of its reliance on a database NMIS9 is more strict about identifying objects, which means that nodes for example are identified exclusively by
UUIDs. Node names are of course still present, but as informal properties only. The relationship between these is queried most easily by the node_admin
tool using the operation.act=list_uuid

The GUI

The adminstrative capabilities of the NMIS9 GUI are almost identical to how NMIS8 worked; the only major exception being that "Edit and Update Node"
cannot display any logs of the Node Update operation as that's scheduled asynchronously. The NMIS9 GUI plays a slightly more passive and and limited
role, i.e. only schedules certain operations for the nmis daemon to pick up - different from NMIS8 where some of these were executed directly by GUI
components.

The Database

NMIS9 makes extensive use of MongoDB behind the scenes; most of the time that should be invisible to you past the initial installation stage, where you
will have to interact with to prime the environment.setup_mongodb.pl

https://community.opmantek.com/display/NMIS/Node+Administration+Tools

NMIS9 is much more powerful than NMIS8 when it comes to clustering; amongst other things that also means that each NMIS9 installation has to be
uniquely identified by what we call its configuration setting (which is automatically generated for you during the initial installation).cluster_id

Interacting with the daemon directly
The NMIS9 daemon accepts just a small number of command line arguments, which are shown when you run it with or :-h --help

./bin/nmisd -?
Usage: nmisd [option=value...] [act=command]

 act=version: print version of this daemon and exit
 act=stop: shut down running daemon and workers
 act=abort: terminate all workers and kill running daemon

if no act argument is present: daemon starts

option foreground=1: stay in the foreground, don't daemonize
option max_workers=N: overrides the configuration
option debug=0/1: print extra debug information

option confdir=path: path to configuration files

The most commonly used ones would be and :act=stop act=abort

With you're instructing a running nmis daemon and all its workers to terminate gracefully, i.e. when any operations that were in progress stop
are completed.
With a running nmis daemon and its workers are stopped immediately and without regard to operations that are in progress.abort

In both of these cases no new nmis daemon is started.

Job Scheduling in NMIS9
In NMIS9 the nmis daemon controls the scheduling of all work based on various heuristics and manages a queue of these jobs; the nmis daemon's worker
processes then pick and process jobs from the queue. Normally all job scheduling is automatic but it is possible to manually schedule activities using the
nmis cli.

All enqueued jobs have a target execution time and a priority value.

The nmis daemon normally does not schedule another instance of a particular job, if that job is already active or overdue for processing. In such a case
you'll see a log message warning about this issue.

If two or more already scheduled jobs should interfere with each other (e.g. a manually scheduled job for the same operation on one node where another
job with the same parameters is already active), then the nmis daemon either discards the new job or postpones the new job for a short period to let the
active job finish: the configuration item sets the number of seconds to postpone. In both cases a log message will postpone_clashing_schedule
warn you about the unexpected clash.

Priorities

Each job instance is given a priority value (between 0 and 1 inclusive, 1 meaning highest priority), and the queue processing takes these into account.
Jobs ready for processing are selected first by highest priority, then by scheduled job execution time (i.e. with equal priority the most overdue job is picked
first).

The normal priorities are configured in in the section, with these defaults:Config.nmis priority_schedule

 "priority_schedule" => {
 "priority_escalations" => 0.9,
 "priority_collect" => 0.85,
 "priority_update" => 0.8,
 "priority_plugins" => 0.85, # post-update and post-collect plugins
 "priority_services" => 0.75,
 "priority_thresholds" => 0.7,
 "priority_metrics" => 0.7,
 "priority_configbackup" => 0.3,
 "priority_purge" => 0.3,
 "priority_dbcleanup" => 0.3,
 "priority_selftest" => 0.2,
 "priority_permission_test" => 0.1,
 },

If you schedule a job manually then you can give it a priority value of your choice; if you don't then nmis-cli defaults to (i.e. highest).job.priority=1

Periodically Scheduled Jobs

The nmis daemon automatically schedules various activities periodically, based on global configuration settings. This overview is part of nmis-cli's
schedule listing output:

Operation Frequency
Escalations 1m30s
Metrics Computation 2m
Configuration Backup 1d
Old File Purging 1h
Database Cleanup 1d
Selftest 15m
File Permission Test 2h

The configuration items controlling these activities' scheduling frequencies are grouped in the section of , with these defaults:schedule Config.nmis

 'schedule' => {
 # empty, 0 or negative to disable automatic scheduling
 'schedule_configbackup' => 86400,
 'schedule_purge' => 3600,
 'schedule_dbcleanup' => 86400,
 'schedule_selftest' => 15*60,
 'schedule_permission_test' => 2*3600,
 'schedule_escalations' => 90,
 'schedule_metrics' => 120,
 'schedule_thresholds' => 120, # ignored if global_threshold is false or threshold_poll_node is
true
 },

If you want to manually schedule one of these with nmis-cli, use the suffix after as the job type, e.g. for the extended schedule_ permission_test
selftest.

Node Activity Scheduling

The node-centric actions (e.g. collect, update) are scheduled based on the node's last activity timestamps and its polling policy, which works the same as
. Service checks are scheduled based on the service's period definition, again mostly unchanged from NMIS8.in NMIS8

When the Updates and Collects last occurred can be found using the GUI, in the Menu "System > Configuration Check > Node Admin Summary".

Running Collect and Update Jobs Manually

You may need to schedule a collect or update to run immediately, generally if you are doing some modelling activities.

Run an update job on a node called "sol" with debug and log it to a file:

https://community.opmantek.com/display/NMIS/NMIS+-+Polling+Policy+-+Configuring+Variable+Polling+Polices
https://community.opmantek.com/display/NMIS/NMIS+-+Polling+Policy+-+Configuring+Variable+Polling+Polices

/usr/local/nmis9/bin/nmis-cli act=schedule job.type=update job.node=sol job.verbosity=9 job.force=true job.
output=/tmp/sol

The result will be something like:

Job 6142a01930437a20d2084c91 created for node sol (05575270-a4ed-4c79-b992-18218c70ce42) and type update.

If you get this error, change the node name:

No nodes found matching your selectors!

The debug logs would be in a file starting with /tmp/sol e.g.

keith@kaos:~$ ls -lrt /tmp/sol*
-rw-r--r-- 1 root root 315334 Sep 16 11:38 /tmp/sol-1631756322.04417.log

To run an update on all nodes once you have finished with your new model

/usr/local/nmis9/bin/nmis-cli act=schedule job.type=update job.force=true

The result will be a list of nodes with jobs scheduled

keith@kaos:~$ /usr/local/nmis9/bin/nmis-cli act=schedule job.type=update job.force=true
Job 6142a1be9eb635425dd1c211 created for node excalibur (f8653511-9cb5-45a0-a1aa-bef81f4e34b8) and type update.
Job 6142a1be9eb635425dd1c213 created for node sif (46b8e7d2-e2d6-4ea4-8599-349fba105556) and type update.
Job 6142a1be9eb635425dd1c215 created for node sol (05575270-a4ed-4c79-b992-18218c70ce42) and type update.

To view the scheduler

keith@kaos:~$ /usr/local/nmis9/bin/nmis-cli act=list-schedules verbose=t
Active Jobs:
Id When Status
What Parameters
6142a2236301fbc46bb58ee1 Thu Sep 16 11:47:15 2021 In Progress since Thu Sep 16 11:47:16 2021 (Worker 16471)
collect {'uuid'='afaea97b-d72d-4ffe-bd09-80df44a8295b','wantsnmp'=1,'wantwmi'=1}
6142a229b45a12c0c4863b87 Thu Sep 16 11:47:21 2021 In Progress since Thu Sep 16 11:47:26 2021 (Worker 16563)
update {'force'=1,'uuid'='9cfed9b9-5395-43a9-a52e-f339e1c69c21'}
6142a229b45a12c0c4863b8b Thu Sep 16 11:47:21 2021 In Progress since Thu Sep 16 11:47:26 2021 (Worker 16663)
update {'force'=1,'uuid'='42bed16d-8029-401e-bf54-fbe6c074c072'}
6142a229b45a12c0c4863b8f Thu Sep 16 11:47:21 2021 In Progress since Thu Sep 16 11:47:28 2021 (Worker 16303)
update {'force'=1,'uuid'='3b1a2c57-97e7-449e-bfad-c30c2d0d645a'}

Queued Jobs:
Id When Priority What Parameters
6142a229b45a12c0c4863b90 Thu Sep 16 11:47:21 2021 1 update {'force'=1,'uuid'='7c197b17-
2d50-434c-a9d2-b8f685afe75a'}
6142a229b45a12c0c4863b91 Thu Sep 16 11:47:21 2021 1 update {'force'=1,'uuid'='f8653511-
9cb5-45a0-a1aa-bef81f4e34b8'}
6142a229b45a12c0c4863b92 Thu Sep 16 11:47:21 2021 1 update {'force'=1,'uuid'='46b8e7d2-
e2d6-4ea4-8599-349fba105556'}
6142a229b45a12c0c4863b93 Thu Sep 16 11:47:21 2021 1 update {'force'=1,'uuid'='d51dab62-
2d6e-4dba-be31-eff1f496cfcb'}
6142a229b45a12c0c4863b94 Thu Sep 16 11:47:21 2021 1 update {'force'=1,'uuid'='801c9c70-
0c06-47e3-a830-76bcabf07e8a'}
6142a229b45a12c0c4863b95 Thu Sep 16 11:47:21 2021 1 update {'force'=1,'uuid'='fab72303-
93dd-4eb0-a917-02c6c3f20efd'}
6142a229b45a12c0c4863b96 Thu Sep 16 11:47:21 2021 1 update {'force'=1,'uuid'='05575270-
a4ed-4c79-b992-18218c70ce42'}
6142a229b45a12c0c4863b97 Thu Sep 16 11:47:21 2021 1 update {'force'=1,'uuid'='4550361e-
26a8-43d6-b48d-339b986b9534'}

Fault-recovery

If a job remains stuck as active job for too long then the nmis daemon will abort it and reschedule a suitable new job. Such stuck jobs can appear in the
queue if you terminate the nmis daemon with or , because these actions immediately kill the relevant processes act=abort service nmis9d stop
and don't take active operations into account.

When and whether NMIS should attempt to recover from stuck jobs is configurable, in under , with these defaults:Config.nmis overtime_schedule

"overtime_schedule" => {
 # empty, 0 or negative to not abort stuck overtime jobs
 "abort_collect_after" => 900, # seconds
 "abort_update_after" => 7200,
 "abort_services_after" => 900,
 "abort_configbackup_after" => 900, # seconds
 'abort_purge_after' => 600,
 'abort_dbcleanup_after' => 600,
 'abort_selftest_after' => 120,
 'abort_permission_test_after' => 240,
 'abort_escalations_after' => 300,
 'abort_metrics_after' => 300,
 'abort_thresholds_after' => 300,
 },

NMIS also warns about unexpected queue states, e.g. if there are too many overdue queued jobs or if there are excessively many queued jobs altogether.

Parameters to prevent the queue getting too big

When the server has limited resources and cannot process the jobs in time, there is a risk of the jobs getting stacked in the queue. One of the symptoms
we can observe in the logs:

Performance warning: N overdue queued jobs!

There are two configuration parameters that can help and can be set in Config.nmis:

There was no default option in the configuration. This value can be added in Config.nmis:abort_plugins_after

'overtime_schedule' => {
 => 7200, # Seconds'abort_plugins_after'
 ...
}

The schedule keeps adding these jobs into the queue. The workers can discard these jobs changing the configuration options
postpone_clashing_schedule to 0.
'postpone_clashing_schedule' => 0,

After theses two changes, nmis9d daemon needs to be restarted.

Interacting with the daemon using nmis-cli
Just like all other NMIS9 command line tools nmis-cli shows an overview of its arguments and capabilities when you run it with or (or without -h --help
any arguments whatsoever):

./bin/nmis-cli
Usage: nmis-cli [option=value...] <act=command>

 act=fixperms
 act=config-backup
 act=noderefresh
 act=daemon-status (or act=status)

 act=schedule [at=time] <job.type=activity> [job.priority=0..1] [job.X=....]
 act=schedule-help for more detailed help
 act=list-schedules [verbose=t/f] [only=active|queued] [job.X=...]
 act=delete-schedule id=<schedule_id|ALL> [job.X=...]
 act=abort id=<schedule_id>

 act=purge [simulate=t/f] [info=t/f]
 act=dbcleanup [simulate=t/f] [info=t/f]

 act=run-reports period=<day|week|month> type=<all|times|health|top10|outage|response|avail|port>

 act=list-outages [filter=X...]
 act=create-outage [outage.A=B... outage.X.Y=Z...]
 act=update-outage id=<outid> [outage.A=B... outage.X.Y=Z...]
 act={delete-outage|show-outage} id=<outid>
 act=check-outages [node=X|uuid=Y] [time=T]
 act=outage-help for more detailed help

Process Status

To find out what processes are running and doing what, use or ; it'll provide you with an overview like the following act=status act=process-status
example:

./bin/nmis-cli act=status
PID Daemon Role
24084 nmisd scheduler
24103 nmisd fping
24109 nmisd worker services nodeOne
24111 nmisd worker <idle>
24113 nmisd worker collect nodeSeven
24115 nmisd worker <idle>

Normally you should have one "nmisd scheduler" process, one "nmisd fping" worker and a few workers. The default configuration (see config item nmisd_
) is to start up and maintain 10 workers. In the example above two of these are idle and two are currently processing particular jobs. Please max_workers

take note of the process id or PID; both are relevant for logging (e.g. finding particulars in the log file as well as adjusting the logging verbosity).

Queue Status

It is often useful to find out what activities are currently being performed and what and how much work is enqueued for future processing.
nmis-cli shows this information when run with the argument , like this:act=list-schedules

./bin/nmis-cli act=list-schedules
Active Jobs:
Id When Status
What Parameters
5d3a483ec6c2b15e1411a7df Fri Jul 26 10:24:30 2019 In Progress since Fri Jul 26 10:24:30 2019
collect <skipped, too long>
5d3a483ec6c2b15e1411a7e1 Fri Jul 26 10:24:30 2019 In Progress since Fri Jul 26 10:24:30 2019
collect <skipped, too long>
...

Queued Jobs:
Id When Priority What Parameters
No queued jobs at this time.

In this example, two jobs are in progress, and no jobs are queued, awaiting processing. Because jobs may have substantial amounts of job parameters,
the display omits these parameters unless you add the option to the nmis-cli invocation. With verbose, you'll see a result like this:verbose=1

./bin/nmis-cli act=list-schedules verbose=1
Active Jobs:
Id When Status
What Parameters
5d3a48fc0a6b3126df1a1a55 Fri Jul 26 10:27:40 2019 In Progress since Fri Jul 26 10:27:40 2019 (Worker 2511)
collect {'force'=1,'uuid'='286d04c7-149c-4b47-9697-75cf927f3ade','wantsnmp'=1,'wantwmi'=1}
...

The important aspects of this verbose display are the 'uuid', which uniquely identifies the node in question for this particular collect operation, and the job
'Id' which is visible in the logs and can be used to abort a job if problems arise.

How to delete Queued Jobs or abort Active Jobs

You can remove queued jobs individually or wholesale using the option of nmis-cli; either pass in the job's Id, (e.g. act=delete-schedule id=5d3a48f
) or use the argument with optional further job property filters (e.g. c0a6b3126df1a1a55 id=ALL job.type=services job.uuid=<somenodeuuid>

) to delete just the matching jobs.

A similar operation is possible for aborting active jobs, but please be aware of possible negative consequences: if you abort an active job with ,act=abort
then the worker process handling that job is forcibly terminated immediately which may result in data corruption.

Manual Scheduling of Jobs

The nmis cli can be used to create new job schedules manually, and the expected arguments for queue management are shown when you run nmis-cli
with (or without any further parameters):act=schedule-help act=schedule

./bin/nmis-cli act=schedule-help

...
Supported Arguments for Schedule Creation:

at: optional time argument for the job to commence, default is now.

job.type: job type, required, one of: collect update services
 thresholds escalations metrics configbackup purge dbcleanup
 selftest permission_test or plugins

job.priority: optional number between 0 (lowest) and 1 (highest) job priority.
 default is 1 for manually scheduled jobs

For collect/update/services:
job.node: node name
job.uuid: node uuid
job.group: group name
 All three are optional and can be repeated. If none are given,
 all active nodes are chosen.

For collect:
job.wantsnmp, job.wantwmi: optional, default is 1.

For plugins:
job.phase: required, one of update or collect
job.uuid: required, one or more node uuids to operate on

job.force: optional, if set to 1 certain job types ignore scheduling policies
 and bypass any cached data.
job.verbosity: optional, verbosity level for just this one job.
 must be one of 1..9, debug, info, warn, error or fatal.
job.output: optional, if given as /path/name_prefix or name_prefix
 then all log output for this job is saved in a separate file.
 path is relative to log directory, and actual file is
 name_prefix-<timestamp>.log.
job.tag: somerandomvalue
 Optional, used for post-operation plugin grouping.

For example, if you wanted to schedule a forced operation for one particular node to be performed five minutes from now, you'd use the following update
invocation:

./bin/nmis-cli act=schedule job.type=update at="now + 5 minutes" job.node=testnode job.force=1
Job 5d3a5e2d3feeed1f19c46e55 created for node testnode (6204cd3d-3cc1-4a3a-b91e-e269eb5042a4) and type update.

or with job.priority, job.verbosity and job.output
bin/nmis-cli act=schedule job.type=update job.priority=1 job.node=testnode job.verbosity=9 job.output=/tmp
/localhost.log job.force=1
Job 5e7d67dec6c2b14bd3679101 created for node testnode (3d994eb5-dcba-46de-bb90-914b5dde822f) and type update.

If successful nmis-cli will report the queue Id and the expanded parameters of your new job.

Administrative and Other CLI Operations

If you edit or transfer NMIS files across machines then some file permissions may change for the worse, and the NMIS9 selftest may alert you
about invalid file permissions.
The fastest way to resolve this is to use the nmis cli with the argument.act=fixperms
The argument instructs nmis-cli to produce a backup of your configuration files right now; config-backup
normally configuration backups are performed automatically and daily.

Performance data

From nmis 9.2, new actions where introduced in NMIS 9.2 to collect performance data:
collect-top-data will collect and process the information of the top data and place it on a csv file. It will run every 5 minutes by a cron job. The files
will be purge every 8 days by default:

./nmis-cli act=collect-top-data

collect-performance-data will run a set of commands specified in the file conf/performance.nmis. It will run every hour by a cron job and will be
purged every 8 days by default:

./nmis-cli act=collect-performance-data

Logging and Verbosity

Standard Log Files

logs/fping.log: the fping worker process (managed by the nmis daemon) logs all its operations to this log file.
logs/auth.log: contains all authentication-related logging that the NMIS9 GUI produces, in the same format that NMIS8 used.
logs/event.log: contains all nmis node events in a machine-consumable format, .identical to NMIS8
logs/nmis.log: all log data that isn't directed elsewhere goes into this log file.

Please note that in NMIS9 all logs are written to in buffered form: information may arrive on disk a few seconds delayed, but at much less performance
cost that NMIS8 incurred.

Log files are now also kept open permanently, until the nmis daemon is instructed to reopen them (by sending a signal the the nmis daemon SIGHUP
process).

The format of the log files and has changed:fping.log nmis.log

[Thu Jul 25 10:38:09 2019] [info] nmisd[1325] Found 7 nodes due for services operation

Now all log messages are prefixed by time tag, severity level and the process name/role and process identifier of the process in question. In the example
above the supervisor component of the nmis daemon has logged this informational announcement.

What gets logged?

https://community.opmantek.com/display/NMIS/Description+of+the+NMIS+Event+Log

1.
2.
3.
4.

5.

NMIS9 is able to log a bit more detail than NMIS8, but much more controllable in terms of what to include when.
There are 13 verbosity levels (in increasing order of noisiness): , , , , (or), , and so on to fatal error warn info debug debug1 debug2 debug3 debug9
.
All messages with severities to are logged with the tag " ".debug1 debug9 [debug]

When you set a particular verbosity level then all messages of higher verbosity are suppressed; e.g. at level messages of severity , , info fatal error w
 and are logged but messages belonging to severities to are suppressed.arn info debug1 debug9

By default the configuration property controls all logging. The default value for this is .log_level info
If you start the nmis daemon with a > command line argument, then that will be used for this daemon and its workers.debug=<level
For node-admin and nmis-cli invocations the same command line argument is available.debug=<level>
A manually scheduled daemon job can have custom and propertes, which control verbosity and target log file for the verbosity output
processing of this job only.
All NMIS daemon instances can be instructed to change their verbosity levels on the fly while the processes remain running, by sending
particular UNIX signals to those processes.

Per-job verbosity and custom log file

If a job schedule includes the property , then the job will be processed with that verbosity level. At the end of processing the job.verbosity=<level>
previous verbosity level is restored.

The related but independent property instructs the NMIS daemon to divert all logging for this one job to a different log file. job.output=<prefixtext>
The log data is saved in the normal directory, and the file is named , e.g. logs <prefixtext>-<highprecision-timestamp>.log logs

. When processing completes log output reverts back to the standard log file./quicktest-1564031667.44838.log

Adjusting process verbosity levels on the fly

All NMIS daemon processes listen for two particular UNIX signals:

When a daemon process instance receives the signal, it increments its verbosity by one level, e.g. from to , or from SIGUSR1 warn info debug2
 to .debug3
When a daemon receives the signal, it decrements its verbosity by one level.SIGUSR2

In both cases a message is logged at the new verbosity level, e.g.:

[Thu Jul 25 12:05:06 2019] [debug] nmisd[1325] received SIGUSR1, incremented verbosity level to debug, debug to
2
[Thu Jul 25 12:05:34 2019] [info] nmisd[1325] received SIGUSR2, decremented verbosity level to info, debug to 0

How to determine which process to signal?

use to see the list of active daemon processes and use with the correct process id,nmis-cli act=status kill
or use a smarter -replacement like and select by full daemon command line,kill pkill
e.g. pkill -ef -USR2 "nmisd fping"

	NMIS 9 Administration Notes

