
Configuration Options for Server Performance Tuning
There are lots of factors that determine the system health of a server. The hardware capabilities - CPU, memory or disk - is an important one, but also the
server load - number of devices (Nodes to be polled, updated, audited, synchronised), number of products (NMIS, OAE, opCharts, opHA - each running
different processes), number of concurrent users.

We all want the best performance for a server, and to optimise physical resources, our configuration has to be fine-grained adjusted. In this guide you will
find recommended parameters, that may not suit in all cases, as a server performance will depend on a lot of factors.

Related Articles
Opmantek Applications

Before Start
Configuration items
Server examples

Stressed system POLLER-NINE
Healthy system MASTER-NINE
Stressed system CUSTOMER SERVER UZH

Related Articles
Scaling NMIS Polling
Scaling NMIS polling - how NMIS handles long running processes
NMIS 8 - Configuration Options for Server Performance Tuning
NMIS 9 - Configuration Options for Server Performance Tuning
opCharts 3 Performance Tuning

Opmantek Applications
This article configurations are related to Opmantek products. opCharts, opEvents, opConfig, opHA, opReports, ... all use the omkd daemon which servers
the frontend requests. Also, opEvents, and opConfig have their own daemons. opCharts

Before Start

The first thing to do will be get the information of our system:

System Information: NMIS and OMK will give us all the information needed. support tool
Monitor services: NMIS can - apache2, nmis9d, omkd and mongod - and provide useful information about CPU monitor the involved processes
and memory - among others.

Configuration items

In low memory environments lowering the number of omkd workers provides the biggest improvement in stability, even more than tuning mongod.conf
does. The default value is 10, but in an environment with low users concurrency it can be decreased to 3-5.

omkd_workers

Setting also omkd_max_requests, will help to have the threads restart gracefully before they get too big.

omkd_max_requests

Process size safety limiter: if a max is configured and it's >= 256 mb and we're on linux, then run a process size check every 15 s and gracefully shut down
the worker if over size.

omkd_max_memory

Process maximum number of concurrent connections, defaults to 1000:

omkd_max_clients

The performance logs are really useful for debugging purposes, but they also can affect performance. So, it is recommended to turn them off when they
are not necessary:

https://community.opmantek.com/display/NMIS/Scaling+NMIS+Polling
https://community.opmantek.com/display/NMIS/Scaling+NMIS+polling+-+how+NMIS+handles+long+running+processes
https://community.opmantek.com/display/NMIS/NMIS+8+-+Configuration+Options+for+Server+Performance+Tuning
https://community.opmantek.com/display/NMIS/NMIS+9+-+Configuration+Options+for+Server+Performance+Tuning
https://community.opmantek.com/display/opCharts/opCharts+3+Performance+Tuning
https://community.opmantek.com/display/opCharts/opCharts+3+Performance+Tuning
https://community.opmantek.com/display/NMIS/The+NMIS+Support+Tool
https://community.opmantek.com/display/NMIS/Managing+Servers+and+Services+with+NMIS8

omkd_performance_logs => false

MongoDB memory usage
MongoDB, in its default configuration, will use will use the larger of either 256 MB or ½ of (ram – 1 GB) for its cache size.

MongoDB cache size can be changed by adding the argument to the /etc/mongod.conf configuration file, as shown below.cacheSizeGB

storage:
 dbPath: /var/lib/mongodb
 journal:
 enabled: true
 wiredTiger:
 engineConfig:
 cacheSizeGB: 1

Here is an interesting information regarding how MongoDB reserves memory for internal cache and WiredTiger, the underneath technology. Also some
adjustment that can be done: https://dba.stackexchange.com/questions/148395/mongodb-using-too-much-memory

Server examples

Two servers are compared in this section.

Primary only have one node, but more than 400 poller nodes. opHA process is what will require more CPU and memory usage.
Poller have more more than 500 nodes. nmis process will require more CPU and memory, for polling the information for all the nodes.

Stressed system POLLER-NINE

System information:

Name Value Notes

nmisd_max_workers 10 (nmis9 only)

omkd_workers 4

omkd_max_requests 500

Nodes 406

Active Nodes 507

OS Ubuntu 18.04.3 LTS

role poller

This is how the server memory graphs looks in a stressed system - We will focus on the memory as this is where the bottleneck is:

https://dba.stackexchange.com/questions/148395/mongodb-using-too-much-memory

NMIS process remains stable, is not using more than 120 mb, and the process was stopped - probably killed for the system due to high memory usage:
TODO How to check this

The OMK process has more fluctuations and higher memory usage - peaks up to 800 mb. The memory trend is to raise:

And mongod keeps using a lot of memory - 3GB, as configured - but it is stable:

Check processes once nmis9d is restarted again:

top

Healthy system MASTER-NINE

System information:

Name Value

nmisd_max_workers 5

omkd_workers 10

omkd_max_requests undef

Nodes 2

Poller Nodes 536

OS Ubuntu 18.04.3 LTS

role master

This is how the server memory graphs looks in a normal system:

Daemons graphs:

omk:

mongo:

Stressed system CUSTOMER SERVER UZH

System information:

Name Value

nmisd_max_workers 50

nmisd_scheduler_cycle 30

nmisd_worker_cycle 10

nmisd_worker_max_cycles 10

nmis9d is crashing with no error messages.

Some server info:

CentOS 7
463 Nodes
Poller server
High IO Wait

increased open files to 100’000

	Configuration Options for Server Performance Tuning

