
Deduplication and storm control in opEvents

Stateful Deduplication and Flaps
Involved Event Properties
Stateful Deduplication, Forwarded Events and Reorder Protection

Programmable Suppression
Delaying and Closing of Trigger Events
Grouping

opEvents provides two mechanisms to handle repeated event occurrences in a practical fashion, namely stateful event deduplication and programmable 
event suppression.

Stateful Deduplication and Flaps
All events that are related to stateful entities (e.g. a node which can be in state up or down, an interface etc.) are automatically checked against the recent 
history of events and the known previous state of this entity. If the new  event reports the same state as the already known one, then the new event is 
suppressed completely: no event record is created  (except for raw logging, if that is enabled).

In practice this means that when there are multiple reports of a "Node down" around the same time, then only the first event will show up on the opEvents 
dashboard. This type of deduplication is essential for dealing with event storms; it is therefore always active and non-adjustable.

Related to that is the concept of a Flap, which in opEvents is defined as a transition sequence from state up to down and back up within a short time 
frame. opEvents uses the configuration option  to define this window, by default 90 seconds.state_flap_window

In a flap situation the up event is marked as flap (by setting the   property to 1) and as associated with the down event (using the   or flap eventids state
 property). In versions up to 2.2.1, the up event's name is always changed to "; newer versions of opEvents ful_eventids "<state entity> Flap

support the config option  , which lets you specify a template (which can contain ,   and   placeholders, e.opevents_flap_name node.X event.Y macro.Z
g. " ). event.event for event.stateful - Flap"

The interaction between down and up events in a flap situation can be fine-tuned using the configuration option  opevents_no_action_on_flap
(default: "true").

When set to "true" opEvents will automatically acknowledge the related down event and set the down event's action_required to false. This 
causes any actions defined in policies for the down event to be stopped (including escalation actions). The down event is thus closed and 
disposed of on receiving the up event.
On the other hand, if  is false, then the down event is not modified in any way and remains open when a flap is opevents_no_action_on_flap
detected; it is thus trackable independent of the up event.

Involved Event Properties

This section outlines certain internal details, mostly relevant If you are using a  to feed opEvents.custom parser

Stateful event handling relies on three core : ,   and  .event properties stateful element state

The   property indicates the type of state source, and is a free-form string.stateful
For example, if the event is related to an interface,  should be set to "Interface"; if it's about a service, the value "Service" would be stateful
most appropriate, etc.
You may use any state source type you want in your parser rules, but avoid overloading already existing ones like  "Node" and "Interface".
The    property indicates which (of potentially many) state sources the event relates to.element
For state type interface, a unique interface identifier should be used (i.e. the ifDescr).
Like above your parser rules may capture or set the element to anything you desire, as long as the combination of node name,  and stateful el

 is a suitably unique identifier for the particular stateful thing you're trying to track.ement
The   property indicates whether the observed state is "good" or "bad".state
opEvents treats the values  , ,  ,   or  as "good", anything else as "bad".up ok good normal closed
This comparison is made case-insensitively, i.e. " " will work just as well as " ".Good OK

For state tracking opEvents then combines the node name and the values of   and  into a lookup key, and associates that key with the stateful element s
 value. tate

Any repeat events with the same lookup key and the same state value are ignored.

Stateful Deduplication, Forwarded Events and Reorder Protection

If you use an  with  to forward events to another opEvents server elsewhere, then you might Event Action or Escalation Policy create_remote_events
occasionally find that such forwarded events arrive out of order, i.e. an earlier 'down' event might be received  the later 'up' event. This can happen after
because of network congestion, action processing on the sending side being asynchronous and subject to process limits and similar reasons.

Out of order reception of stateful events can cause state desynchronisation at the receiving server, as the up event would be processed first and thus be 
deduplicated and discarded, while the down event later on causes a transition to state down which isn't cleared.

opEvents versions 2.4.2 and newer provide a reorder protection mechanism to handle such out of order situations better - which comes at the cost of 
temporarily delaying the processing of some forwarded stateful events.

https://community.opmantek.com/display/opEvents/opEvents+input+sources
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties
#


To enable reorder protection, two steps need to be taken:

you need to set the configuration property   to a positive number (e.g. 30) on the receiving server,state_reorder_window
and you must make sure that your forwarded events do carry an   to denote the event as originating from a remote  property,authority
authoritative source.

If both of these conditions are met, opEvents on the receiving server will temporarily postpone processing of a forwarded stateful event, if the event would 
be discarded by stateful deduplication.
This allows earlier but externally delayed related events to enter the processing queue in the correct sequence, if any such do arrive within the configured 
time window after the out-of-order postponed event.

If a state-changing remote event does arrive within the time window configured by  , then the correct sequencing of transitions is state_reorder_window
restored and processing of postponed events resumes immediately. Otherwise, processing resumes after the time window elapses.

The   should not be set too large as it causes undesirable event processing delays; a value of 10 to 30 seconds should suffice in state_reorder_window
most environments.

Programmable Suppression
To provide fine-grained control of how to handle repeated events of any kind, opEvents also supports programmable event suppression. Using this facility 
the administrator can define flexible rules for when to suppress repeat events, based on the recent event history and some further refinement criteria. 
Please note, however, that programmable suppression is available only for classes or groups of events and cannot be enabled specifically for a single 
node only.

The configuration file   can contain any number of  and suppression directives given in a simple, almost EventRules.nmis user-defined event synthesis
self-explanatory format.

A suppression rule consists of:

a rule , which is for display purposes only when suppression is concerned,name
a list of  (more precisely, their names), which are the events to consider for suppression,events
an optional list of  clauses, which define whether thresholds are to be interpreted globally for all named events, or separately within groupby
smaller groups,
a  parameter, which defines the time window to examine,window
optional   and   parameters (in opEvents 2.0.4 and newer),delayedaction autoacknowledge
and a  clause with a min and/or a max occurrence parameter.suppress

Note that this configuration file can also contain , which differ just slightly (they have a   parameter and no   rules for Event Synthesis count suppress
clause).

Here is an example rule:

'5' => {
         name=>"suppressing repeats", # name not relevant for suppression
         events=>['Node Configuration Change'],
        groupby=>['node.name'],
        window=>120,
        suppress=>{min=>2, max=>8},
},

All such rules are applied independently to an event (until one indicates suppression or the end of the rule list is reached).

All named events that are listed in a suppression rule and which have occurred in the preceding   seconds are checked and counted together. window
Listing multiple events in one rule will lump them together as far as the occurrence counting is concerned. These recent events will then be apportioned to 
groups if   is used, and then the event count is compared to the min/max occurrence parameters. If the count is above   and below , then groupby min max
the new event is marked as a duplicate (of the oldest event that was counted) and has its   property set to 1 which prevents any future action_checked
policy actions (e.g. escalations) from being executed; the event is nevertheless shown in the opEvents GUI.

If the suppression clause contains no   parameter, then a minimum of 1 is assumed. If no   is present, then infinity is used. Both   and  min max min max
include the current event, so a   of 2 will suppress the first and further repeats.min

Delaying and Closing of Trigger Events

In opEvents 2.0.4 and newer, suppression rules can optionally specify a number for the   property, to delay all policy action processing for delayedaction
potential trigger events. If the criteria for suppression are met within the delay period, then all action processing will be aborted and skipped for these 
suppressed events. If the   property is also set, then the suppression includes not just aborting action processing but also marking the autoacknowledge
event as acknowledged.

Grouping

https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties
https://community.opmantek.com/display/opEvents/Event+Correlation
https://community.opmantek.com/display/opEvents/Event+Correlation


If no   clause is present, then the set of matching events is counted directly, which may be too generic for many common scenarios. For example groupby
suppressing events for a particular customer or service group wouldn't be possible. Grouping solves this problem: the set is split into groups with matching 
property values and the thresholds are applied to those groups.

The   clause has the form of a list of   or   property specifications (e.g.  or  ), which are used to groupby node.X event.Y node.customer node.group
group events into buckets for counting: only events that share the same values for all the listed grouping properties will be counted together. For example, 
the   clause   would cause this suppression rule to be applied independently for all combinations groupby [ 'node.customer', 'event.priority' ]
of customer and event priority. The clause given in the example block above will suppress 2-8 node configuration events  within 120 for any individual node
seconds; without the   repeat node configuration events would be suppressed regardless of where they happened.groupby

The common node properties , and the standard event properties are .are listed here documented on this page

https://community.opmantek.com/display/opCommon/Common+Node+Properties
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties

	Deduplication and storm control in opEvents

