
opEvents input sources

opEvents can process information from a variety of sources, some of which can be extended to suit non-standard deployments. This document briefly
documents how to configure opEvents' input sources.

Input Configuration
Black and Whitelisting
Normalisation and Enrichment
Generic Extensible Parser

Parser Plugins
Requirements
Plugin Interface
Plugin Configuration
Plugin Activation

Command-line Event Creation
Built-in Parsers

Input Configuration
The inputs opEvents is supposed to handle are specified in the section of , primarily in subsection . opevents conf/opCommon.nmis opevents_logs
opEvents primarily handles event information sourced by consuming and collating log files from sources like NMIS, Tivoli or general syslogs.

Here is an example configuration fragment:

 'opevents_logs' => {
 # parsertype => list of logfiles (or dirs for nmis_json_dir)
 # natively supported: tivoli_log, cisco_syslog, nmis_traplog,
 # nmis_eventlog, nmis_slavelog and nmis_json_dir
 'cisco_syslog' => ['<nmis_logs>/cisco.log', "/some/other/log.file"],
 'tivoli_log' => ['<nmis_logs>/tivoli.log'],
 'nmis_traplog' => ['<nmis_logs>/trap.log'],
 'nmis_slavelog' => ['<nmis_logs>/slave_event.log'], ### DEPRECATED - now uses below parser
 'nmis_pollerlog' => ['<nmis_logs>/poller_event.log'],
 'nmis_eventlog' => ['<nmis_logs>/event.log'],
 # attention: json logs in this directory are REMOVED after consumption
 # 'nmis_json_dir' => ['<nmis_logs>/json'],
 },

The natively understood formats are:

Format Name
(Parser Type)

Description

nmis_eventlog An created by NMISevent log file

nmis_slavelog An NMIS poller event log file

nmis_traplog An NMIS trap log file

nmis_json_dir A directory of NMIS event logs in JSON format

cisco_syslog A Syslog log file containing logs created by Cisco devices

tivoli_log A Tivoli log file

To enable a particular log file or format, you need to add an entry for the log file in question to the list of files for the appropriate log format; check the cis
 entry in the example above for the syntax. The tokens in the example work like centrally-defined shortcuts or macros; co_syslog <nmis_something>

they are replaced by the actual locations given in the section at the beginning of .directories conf/opCommon.nmis

opEvents handles non-existent log files gracefully, but the log formats need to match the actual content. All log files are reopened on demand (e.g. when
log rotation renames a file), and checked at least once every seconds. The order of log file specifications is not relevant.opeventsd_update_rate

Please note that the selection of the built-in parsers is tied to the value of the format name; all custom parsers that you might define must have their own,
unique format names which must not clash with any of the built-in parser types.

Black and Whitelisting

https://community.opmantek.com/display/NMIS/Description+of+the+NMIS+Event+Log

opEvents ships with ready-made black and whitelist rules to reduce voluminous inputs down to the relevant details, but these can be adjusted at need.
These lists are active if the settings or are set to , respectively.black_list_enabled white_list_enabled "true"

The black list contains a set of filtering rules which remove matching log entries from opEvents' input stream. The white list rules can be used to ensure
that matching input entries are processed; if the white list is enabled, then events matching the white list will be processed (but raw logging is still only
performed for forensics purposes). Enabling both black and white list options simultaneously is not useful.

Both black and white lists are configured in /usr/local/omk/ , in sections like this example:conf/EventListRules.nmis

'blackList' => {
 '10' => 'NTP Core \(INFO\)',
 '20' => 'OLD-CISCO-TS-MIB::tslineSesType\.6\.1=tcp',
 '30' => 'CISCO-SYSLOG-MIB::clogMessageGenerated',
 },
'whiteList' => {
 '1' => 'TIVOLI\|\w+\|ams',
 '10' => 'SYS-[0123]-\w+',
 '20' => 'LINEPROTO',
 '30' => 'OSPF-\d-ADJCHG',
...

The format is straight-forward: the numeric key controls order of rule application, and the right side is a that the log entries are matched regular expression
against.

opEvents 4.x:

/usr/local/omk/conf/EventListRules.json

http://perldoc.perl.org/perlre.html

EventListRules.json

{
 "whiteList" : {
 "91" : "CISCO-RTTMON-MIB::rttMonNotification",
 "90" : "CISCO-RTTMON-MIB::rttMonTimeoutNotification",
 "80" : "CISCO-CONFIG-MAN-MIB::ciscoConfigManEvent .+ ccmHistoryEventConfigDestination\\.\\d+=running",
 "1" : "TIVOLI\\|\\w+\\|ams",
 "72" : "BGP4-MIB::bgpEstablished",
 "31" : "BGP-\\d-ADJCHANGE",
 "30" : "OSPF-\\d-ADJCHG",
 "50" : "SNMPv2-MIB::snmpTrapOID.0=IF-MIB::link",
 "40" : "SYS-\\d-CONFIG_I",
 "20" : "LINEPROTO",
 "10" : "SYS-[0123]-\\w+",
 "73" : "BGP4-MIB::bgpBackwardTransition",
 "60" : "BRIDGE-MIB::newRoot",
 "70" : "OSPF-TRAP-MIB::ospfNbrStateChange"
 },
 "blackList" : {
 "30" : "CISCO-SYSLOG-MIB::clogMessageGenerated",
 "10" : "NTP Core \\(INFO\\)",
 "20" : "OLD-CISCO-TS-MIB::tslineSesType\\.6\\.1=tcp"
 },
 "archiveList" : {
 "30" : {
 "regex" : "Node (Up|Down)",
 "archive" : "NodeEvents"
 },
 "20" : {
 "archive" : "SoftwareErrorArchive",
 "regex" : "INVMEMINT|MALLOCFAIL"
 },
 "10" : {
 "archive" : "SyslogArchive",
 "regex" : "SYS-[0123]-\\w+"
 }
 }
}

Normalisation and Enrichment
For the natively-supported log formats (except) only the actual parsing is hard-coded; the act of subsequent further extraction and nmis_json_dir
collection of relevant details is configurable - but of course opEvents ships with a substantial set of default normalisation rules. Event normalisation
consists of associating a log entry with a node, extracting details, determining whether the event is stateful or stateless, followed by optional additional
enrichment from external sources.

Normalisation for snmptraps and logs are controlled by the configuration file . The next section Generic Extensible conf/EventParserRules.nmis
Parser documents how this works.

There are also some built-in parsers for NMIS logs , and even tivoli via which have a similar EventNmisRules.nmis EventTivoliRules.nmis
format. Discussed in the last section.

Further enrichment can be performed using (using the action), enrichment statements in or from external policy actions tag.tagname() correlation rules
databases.

There is also the option to directly create Events using the Rest API which uses a similar json formats to the file format which is not nmis_json_dir
subject to normalisation; instead the contents of these are expected to be normalised already.

Generic Extensible Parser
The default method for Normalisation is with the Generic Extensible Parser you extend current parser entries or you conf/EventParserRules.nmis
ca define your own generic parser rules to integrate just about any text-based log information into opEvents. Your event is expected to contain all required

, the minimum for it to be accepted is a date and host entry but for the event to be usable in the Gui it also needs an "event" entry at a event properties
minimum.

#
https://community.opmantek.com/display/opEvents/Event+Correlation
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties

The generic parser is activated for different log files in the configuration option , in , there is one entry opevents_parser_rules conf/opCommon.nmis
for each log file which defines which 'parser' entry is to be used. The rules are defined in . Here is an excerpt from the conf/EventParserRules.nmis
generic parser rules example that opEvents ships with: In this case the parser entry (used to associate it with certain log files) is called 'cisco_alternate'

'cisco_alternate' => {
 1 => {
 "IF" => qr/%/, # no cisco log if no % present
 "THEN" => {
 # match date/time, host and details
 10 => {
 IF => qr/^(\S+\s+\d+\s+[\d:]+)\s+(\S+)[^%]+%(.+)$/,
 THEN => "capture(date,host,details)",
 },
 # some units have Local instead of hms
 11 => {
 IF => qr/^(\S+\s+\d+)\s+Local\s+(\S+)[^%]+%(.+)$/,
 THEN => "capture(date,host,details)",
 },
 # match event name, could have done that in one of the regexp above
 20 => {
 IF => qr/%(\w+\-\d-\w+):/,
 THEN => "capture(event) AND capture(syslog)", # save this in two places
 },
 '23' => {
 IF => qr/%BGP-5-ADJCHANGE: neighbor (\d+\.\d+\.\d+\.\d+) Down/,
 THEN => 'capture(element) AND set.event(BGP Neighbor Down) AND set.state(down) AND set.
priority(4) AND set.stateful(BGP Neighbor)',
 },
...

The format is straight-forward: the top key allocates a new log format type (here) which you would use in for your cisco_alternate opevents_logs
log files. This parser type or format name must be distinct and not clash with any built-in parsers (e.g. creating a parser type "nmis_eventlog" won't work).

Under that key there are any number of (nested) capture rules, which control what to match in an input, and how to copy material to the newly created
event. These rules use a format very similar to the policies: defines a that the log entry has to match, Event Actions and Escalation IF regular expression T

 declares what to do in that case, and a successful rule with optional statement skips the rules on the same nesting level.HEN BREAK

The expression consists of a nested sub-policy or of an action statement.THEN

Before opEvents 2.2 the action statement must be an single string containing an AND-separated list of directives; from opEvents 2.2 onwards it can also
be an explicit list of directives (which is faster and more flexible; see the that ships with opEvents for a Best-current-practice EventParserrules.nmis
example).

In both cases the action statement must contain one or more of the supported directives:

set. () sets the named property to the static value. propertyname value
No quoting of the value is required or supported.
The character ")" cannot be part of the value before opEvents 2.2; In 2.2 and above it may only be present if you use the explicit list format for
your action statement.
capture(,...) saves the respective captures from the regex in the named properties. The captures are assigned in their propname1,propname2
order in the ; if you want grouping but not capturing, use in your regex. Note that you cannot use multiple capture regular expression (?:....)
statements in one THEN.
opEvents version 2.0 introduces the new action . This aborts all parsing of this input line altogether and no event is created for it.ignore
Normally the generic parser is expected to extract suitable information for an event from single input line, which might not work well if your every
log data is coming from multiple sources or can't be suitably prefiltered.
In opEvents version 2.2 we've added the directives . andresolve.fwd(propname) resolve.rev(propname)
The directive expects the property to be a DNS name and queries the DNS for an IP address associated with the name; the resolve.fwd() re

 directive interprets the property as an IP address and looks for a host name for it. If the resolution is successful, the property value solve.rev()
is replaced by the DNS data; otherwise the property is left as-is.
e.g. to resolve a BGP Peer address which is stored in the element name, add an entry to DNS or /etc/hosts and include resolve.rev(element) as a
parser directive.
opEvents 2.2 also adds the new directive , which invokes an external parser plugin for further enrichment or modification plugin()PluginName
of the event.
This functionality is described in more detail in the next section.

Rules are applied in ascending order, defined by their numeric key, and nesting is fully supported.
Note that the numeric key may contain fractional numbers (e.g. "14.8"), which makes it very easy to insert new rules between existing ones.

Your event is has to include a Host and Date entry to be accepted. For it to be usable in the GUI it also at a minimum needs an "event" property. We
recommend it includes further details per this page, event properties.

If your parser is only required to display the raw log output and not perform any event extraction, adding the below to EventParserRules.json will enable
the new parser:

#
http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties

"MyNewParser" : {
},

Once this has been added, ensure that the opEvents daemon has been restarted.

opEvents 2.0.6 and newer ships with complete generic parser rules for parsing Cisco syslogs (log format type " ") and SNMP trap logs cisco_alternate
(log format type " "), plus other syslog, nxlog parsers for various vendors such as Huawei, Juniper, Microsoft, these can be extended and new traplog
entries can be contributed via .code@opmantek.com

Parser Plugins

For situations where external input must be incorporated into events at the time of parsing, opEvents 2.2 and newer support user-defined parser plugins.
The directory contains an example plugin called and a file with documentation.install/parser_plugins TestPlugin.pm README

Requirements

All plugins must be valid . The files must be named and reside in the directory . Each plugin must have Perl code Something.pm conf/parser-plugins
a proper ' ' namespace declaration that matches the file name, and this package namespace must not clash with any existing package Something;
opEvents or NMIS components.

It's recommended that the plugin have a version declaration right after the package namespace declaration, e.g.. ' 'our $VERSION = "1.2.3";
The ' ' line at the end of the file is required and must not be omitted.1;

The plugin may load extra Perl modules with 'use', but it must not use any package-level global variables. All its variables and any objects that it might
create must have local scope. The plugin must not use Exporter to export anything from its namespace.

Plugin Interface

A plugin must offer a function called or it will be ignored by opEvents.parse_enrich

When triggered by a parser directive, the function of that plugin will be called with two arguments, line and event (in plugin(SomeName) parse_enrich
that order).

Line is the complete log entry/line that is being processed and cannot be modified.
Event is a hash reference and contains the preliminary data structure of the event as parsed so far. live
Event properties can be changed, added and deleted by the plugin function by modifying this live event hash.

The parse_enrich function must return one of the following:

1: to indicate that it succeeded,
0 or undef: to indicate that event parsing should be aborted for this line and no event should be created (like the parser directive),ignore
or any other string value as an error message (which will be logged).

Any changes made to the event properties are ignored unless the function completes successfully and returns 1. This also applies to a crashing parse_en
 function, or if is terminated because it ran over time.rich

Plugin Configuration

The configuration option (default: 5 seconds) sets the maximum execution time for a single call. If a opevents_plugin_max_runtime parse_enrich
plugin's function runs longer than that it is terminated and an error message is logged; any changes that it may have made to the live event datastructure
are ignored in this case.

Plugin Activation

A generic extensible parser rule can invoke one or more parser plugins using the action directive .plugin(PluginName)

e.g. JSON example

 "42" : {
 "IF" : "Node Down",
 "THEN" : "plugin(PluginName)"
 },

When such a plugin call directive is encountered for the first time, the opEvents daemon loads (and caches) all available plugins that meet the
requirements. To reread modified plugins, opeventsd must be restarted.

mailto:code@opmantek.com
http://perldoc.perl.org/perlintro.html

a.
b.

If a plugin named 'PluginName' is available, its function is executed and if successful, the modifications made by the function replace the parse_enrich
event properties. Parsing then continues normally.

Command-line Event Creation
To provide a simple interface for external programs, opEvents also can create an event "on the fly" with event details from command-line arguments or a
JSON file.

To create an event on the fly, you have to call with the argument , which causes it to use all further key=value pairs opeventsd.pl act=create-event
in the arguments to construct an event, like this example:

opeventsd.pl act=create-event event=testevent node="somenode" details="this is just a test event"
action_required=1 action_checked=0 priority=4

Your event is expected to contain all required and no further normalisation is performed. The option action_required should be set to 1 so event properties
that opEvents will process the event with Action Policies, or 0 to have opEvents not process with action policies.

Alternatively you can save your desired event's properties in a file in JSON format, and use to instruct opeventsd to create an event act=create-json
from it:

opeventsd.pl act=create-json path=./myevent_in_format.json

Built-in Parsers

'rules' => {
 '1' => {
 event => 'Interface Down',
 regex => qr/LINEPROTO-5-UPDOWN:.+down/,
 stateful => 'Interface',
 priority => 1,
 },
 ...
 '10' => {
 regex => qr/Interface (\w+[\d\/\.]+)/,
 name => 'element',
 },

The key component is the section, which controls what details are extracted from a log entry and how they are saved a sevent properties. There rules
are a few ways of augmenting the event with information:

if both and directives are present and if the regex matches and captures something from the log entry, then a named property (with regex name
name from the directive) will be created, with the value being the captured content.name
The regex matching is performed on most of log input, but different across the various parsers:
For parser types other than and the regex is applied to the event property, which at this point holds nmis_eventlog nmis_slavelog details
most of the input log entry (usually everything except node and timestamp)
For the event log parsers, the match is applied to:

only to the event property named by the directive if that directive is present (e.g.),variable 'variable' => 'node'
or to the whole, unsplit input log entry.

Parser types and : if a rule block contains a directive which matches, then any key-value except nmis_eventlog nmis_slavelog regex
entries for , , or in that rule block will be copied to the event as static properties.event priority state stateful

(You might also encounter the deprecated legacy format of using directives and to set just one property to a fixed value.)name value

In the example above, rule 1 will be active if a "line protocol down" log entry is detected, and in that case it'll add properties "priority", "event", and
"stateful", all with static values. Rule 10 will be active if the log entry contains "Interface <something>", and it'll copy over the matched <something> as the
value of the property named "event".

All normalisation rules are checked in sequence of their numeric key, and all the ones whose directive matches will contribute to the new event's regex
properties. Normalisation and enrichment then continues using information from NMIS; events are associated with the relevant nodes, stateful
deduplication is performed etc.

http://opeventsd.pl
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties

	opEvents input sources

