High Volume SNMP Trap Processing

Related Topics

SNMP Traps with Cisco and Other devices
opEvents - Centralized Logging Solution

opEvents - Syslog Handling - Adding a New Vendor
opEvents - Syslog Handling - Adding a New Format

Table of Contents

® Purpose
® Overview
® Deployment Steps
O Step #1 - Configure snmptrapd to forward traps to syslog
® RHEL/Centos - Edit /etc/sysconfig/snmptrapd
® Debian - Edit /etc/default/snmptrapd
" Verify /etc/snmp/snmptrapd.conf
O Step #2 - Configure rsyslog to route traps into a specified log file
O Step #3 - Configure opEvents to process SNMP trap log file using a plugin
= Modify opCommon.nmis
= Modify EventParserRules.nmis
= |nstall SNMP trap parser plugin
O Step #4 - Restart associated daemons
O Step #5 - Verify
® Alternative Solution
O Step #3 - Configure opEvents to process SNMP trap log file using a built in parser
= Modify opCommon.nmis (abi3)/opCommon.json (abi4)
® Modify EventParserRules.nmis

Purpose

Provide a SNMP trap handling solution that can scale to 300 traps per second.

Overview

This solution leverages snmptrapd to initially pull the trap off the wire, apply access control, translate, then forward it to rsyslog. rsyslog then puts the
translated trap in a log file to be processed by opEvents. opEvents then applies filtering, parsing and actions as appropriate.

SNMP Trap Processing - Line Diagram

snnpt rapd--> rsysl og--> /var/log/ nm s/snnptrap.|log --> opEvents --> Blacklist --> EventParserRules -->
SnnpTr apPar ser Pl ugi n. pm

Deployment Steps

Step #1 - Configure snmptrapd to forward traps to syslog

RHEL/Centos - Edit /etc/sysconfig/snmptrapd
Below is an example of configuring snmptrapd to send traps to rsyslog. The '-Ls' flag tells snmptrapd to send logging output to syslog. Using '-Ls2'

specifies that snmptrapd will send it with the local2 facility value. The facility value is what rsyslog keys on for routing decisions. Please review the
snmptrapd and snmpcmd man pages.

letc/sysconfig/snmptrapd

OPTIONS="-n --0Q Ls2 -p /var/run/snnmptrapd. pid -m ALL -M/usr/local/nm s8/ m bs/traps"

Debian - Edit /etc/default/snmptrapd

Below is an example of configuring snmptrapd to send traps to rsyslog. The '-Ls' flag tells snmptrapd to send logging output to syslog. Using '-Ls2'
specifies that snmptrapd will send it with the local2 facility value. The facility value is what rsyslog keys on for routing decisions. Please review the
snmptrapd and snmpcmd man pages.

https://community.opmantek.com/display/NMIS/SNMP+Traps+with+Cisco+and+Other+devices
https://community.opmantek.com/display/opEvents/opEvents+-+Centralized+Logging+Solution
https://community.opmantek.com/display/NMIS/opEvents+-+Syslog+Handling+-+Adding+a+New+Vendor
https://community.opmantek.com/display/opEvents/opEvents+-+Syslog+Handling+-+Adding+a+New+Format

letc/sysconfig/snmptrapd

TRAPDOPTS="-n --0Q Ls2 -p /var/run/snnptrapd. pid -mALL -M /usr/local/nm s8 m bs/traps"

[etc/systend/ systenl snnptrapd. servi ce. d/ overri de. conf

-n -0Q -Ls2 -p /var/run/snnptrapd. pid -mALL -M /usr/local/nm s9/ m bs/traps

[Servi ce]

ExecStart =

ExecStart=/usr/sbin/snnptrapd -n -0OQ -Ls2 -p /var/run/snnptrapd. pid -mALL -M /usr/local/nm s9/ m bs/traps

Verify /etc/snmp/snmptrapd.conf

Verify there is not reference to a traphandle in /etc/snmp/snmptrapd.conf

Step #2 - Configure rsyslog to route traps into a specified log file

We need the traps to be placed into a specified log file that opEvents will process. The following example states that all messages with a facility of local2
will be placed in the /usr/local/nmis8/logs/snmptrap.log file. Please review the rsyslog.conf man page.

letc/rsyslog.d/nmis.conf

| ocal 2. * /usr/1ocal /nm s8/1o0gs/snnptrap.|og

Most likely we will not want these messages to also go to /var/log/messages. We can edit /etc/rsyslog.conf to prevent this from happening. An example
for facility local2 follows; notice the pwd

' statement.

letc/rsyslog.conf

*.info; mail.none;authpriv.none; cron. none; | ocal 2. none /var/| og/ messages

Step #3 - Configure opEvents to process SNMP trap log file using a plugin

Modify opCommon.nmis

We need to tell opEvents to process the newly created snmptrap.log file. This is done in /usr/local/omk/conf/opCommon.nmis. Be careful with this file; in
reality it is a perl hash, any syntax error will render the OMK server dead. After modifying this file check it for syntax errors with the following command
'perl -c /usr/local/omk/conf/opCommon.nmis'. If you are not scared you should be ‘2

Something like the following example needs to be added to the opevents section of opCommon.nmis.

lusr/local/omk/conf/opCommon.nmis

' opevents_logs' => {
"snnptraps' => [
' <nmi s_| ogs>/ snnptrap. | og’

1.

In the case of opEvents 3, it needs to be adapted to json format.

"opevents_logs" : {
"snnptraps" : [
"<nm s9_l ogs>/ snnptrap. | og"

1.

Modify EventParserRules.nmis

EventParserRules.nmis is where parsing generally occurs. In this case we are anticipating some complex maneuvers; so we are going to tell
EventParserRules to send this to an opEvents plugin where complexity is better dealt with. Remember all that big bad syntax talk? Same applies here.

Something like the following example needs to be added to EventParserRules.nmis

/usr/local/lomk/conf/EventParserRules.nmis

%hash = (
'snnptraps’ => {
1 =>{
IF => 1,
THEN => "pl ugi n(snnpTrap)"
I
H

Install SNMP trap parser plugin
Install an opEvents parser plugin such as: snmpTrap.pm . This perl module will be placed in /usr/local/omk/conf/parser_plugins.

The plugin is not always needed. Traps can be processed using the event handler nmis traplog, but the plugin can parse more complex snmp traps.

Step #4 - Restart associated daemons

Restart the following daemons:

® rsyslog
® snmptrapd
® opeventsd

Step #5 - Verify

Use tcpdump to observe snmptraps being recieved by the server

Use the ps command to ensure snmptrapd, rsyslog, omkd, and opeventsd are running with the proper options
Tail /usr/local/nmis/logs/snmptraps.log file

Tail /usr/local/omk/log/opEvents.log

Via the GUI; check opEvents views-> raw logs

Via the GUI; check opEvents views -> events

Alternative Solution

A plugin is not always needed for snmp trap processing. The plugin should be necessary just when we need to process really complex traps.

Using the built in traplog parser, we would modify the Step 3 for the following:

Step #3 - Configure opEvents to process SNMP trap log file using a built in parser

Modify opCommon.nmis (abi3)/opCommon.json (abi4)

We need to tell opEvents to process the newly created snmptrap.log file. This is done in /usr/local/omk/conf/opCommon.nmis. Be careful with this file; in
reality it is a perl hash, any syntax error will render the OMK server dead. After modifying this file check it for syntax errors (Just for the .nmis file) with the
following command 'perl -c /usr/local/omk/conf/opCommon.nmis'. If you are not scared you should be ‘<

"opevents_logs" : {
"traplog" : [
"<nm s9_l ogs>/ snnptrap. | og"

1

Modify EventParserRules.nmis

EventParserRules.nmis is where parsing generally occurs. In this case we are anticipating some complex maneuvers; so we are going to tell
EventParserRules to send this to an opEvents plugin where complexity is better dealt with. Remember all that big bad syntax talk? Same applies here.

We would need to review the trap format. Usually they look like the following:

https://community.opmantek.com/display/opEvents/Parser+Plugins+using+the+opEvents+object
https://community.opmantek.com/download/attachments/25985662/snmpTrap.pm?version=1&modificationDate=1532748251000&api=v2

May 14 16:59:21 | ocal host snmptrapd[17772]: 2021-05-14 17:04:21 UDP: [127.0.0.1]:38166->[127.0.0.1]:162 [UDP:
[127.0.0.1]:38166->[127. 0. 0. 1] : 162] : #012RFC1213- M B: : sysUpTi me. 0 = 0: 0: 00: 00. 00#011SNMPv2- M B: : snnpTrapO D. 0 =
BGP4- M B: : bgpBackwar dTr ansi t i on#0110OPMANTEK- M B: : onkNot i fi cati ons = "Events"

Based on this, we will need to add the following rules to EventParserRules.nmis/EventParserRules.json, in order to be processed:

"traplog" : {
B A
"I'F* : "SNWPv2-M B::snnpTrapd D',
"THEN' : {
"6" 1 {
"THEN' : [
"capture(date)"
1,
"DESCRI PTION' : "first match date/tine",
IR (W d{4}-\vdivd-\vdv v d A dv v di v dv N di N dvd) !
H
12" |
"THEN' @ [
"capture(host)"
1.
"DESCRI PTION' : "host captured",
TR (W dH A AR NV dH A d) !
I
"68" : {
"THEN' : [
"set.event (OW Notifications)",
"set.stateful (O Notifications)",
"set.state(up)",
"set.priority(2)"
1.
"I'F" : "OPMANTEK- M B: : onkNot i fi cations"”
}

We can add as many rules and captures as we need. Here you can find further information.

https://community.opmantek.com/display/opEvents/opEvents+EventParserRules+-+Adding+Rules+For+SNMP+Traps

	High Volume SNMP Trap Processing

