
opEvents - Solution Guide - Sending Events to a Central
Event Management Server

Feature Overview
Related Wiki Articles
PreConditions
References
Configuration

opCommon.json
Disable Auto Acknowledge of Up Events
Setup Macros
Copy Node Properties
Verify the opCommon.json file is valid JSON

Event Policy
Check All Events
Tag any up events
Tag any Production node events to escalate
important events
Check tags

Script
Handling a High Volume of Events Being Sent to Primary Event
Server
Finishing Up

Feature Overview
opEvents has the ability to forward events based on filters to another
server running opEvents (or other service desk systems, like
Servicenow and Connectwise). This is used as part of the Opmantek
Multi-server architecture with distributed pollers and centralised primary
servers, it is also extremely useful in situations such as an opEvents
instance not being reachable across the internet, but another central
instance of opEvents is reachable.

Events are forwarded using http or https which is setup separately on
your server, independent of opEvents. A typical Apache SSL
configuration works just fine.

Related Wiki Articles
Configuring opEvents

opEvents Configuration Settings

Create remote event

Configuring SSL on apache for NMIS and OMK

PreConditions
We're assuming you already have a poller running NMIS and opEvents
along with another instance of opEvents setup, configured and working.

This functionality is intended for users with advanced knowledge of
NMIS and opEvents.

If you need HTTPS security, this should already have been configured
(see link above).

The details here are related to opEvents 4.x and higher which integrates
with NMIS9.

References
NMIS - Common Node Properties

https://community.opmantek.com/display/opEvents/Configuring+opEvents
https://community.opmantek.com/display/opEvents/opEvents+Configuration+Settings
https://community.opmantek.com/display/opEvents/Create+remote+event
https://community.opmantek.com/display/opCommon/Configuring+SSL+on+apache+for+NMIS+and+OMK
https://community.opmantek.com/display/opCommon/Common+Node+Properties

NMIS - NMIS Event List
NMIS - Description of the NMIS Event Log
opEvents - opEvents Normalised Event Properties
opEvents - Event Actions and Escalation
opEvents - opEvents input sources

Configuration
To enable this functionality, you must edit the opEvents "Event Actions" JSON file. We recommend using the web GUI to do this as there is a very
handy "Validate" button that can be used to ensure your configuration changes are indeed valid JSON and won't break opEvents. If you must, you can
also edit the JSON file directly at /usr/local/omk/conf/EventActions.json file. Beware that making changes that result in an invalid JSON file will result
in your actions not functioning as intended.

Validating a JSON file on the command line can be done using the command:

python -mjson.tool /usr/local/omk/conf/EventActions.json

opCommon.json

Certain node properties must be defined in opCommon.json in order for opEvents to make use of them.

Disable Auto Acknowledge of Up Events

The opEvents engine will normally auto acknowledge up events as they are clearing a down event, to make this solution work you will need to disable
this feature.

Verify and if necessary modify the configuration file /usr/local/omk/conf/opCommon.json and change the setting opevents_auto_acknowledge_up to
be false.

Setup Macros

 "macro" : {
 "authority" : "YOUR_SERVER_NAME"
 },

Copy Node Properties

opEvents supports the ability to copy node properties to the event so they persist with the event and can be used. In earlier versions for example, group
and were at the root level. These are now under so should be defined as below.location configuration

 "opevents_event_copy_node_properties" : [
 "configuration.group",
 "configuration.location"
],

Not like below.

 "opevents_event_copy_node_properties" : [
 "group",
 "location"
],

This is mostly of relevance to customers who have upgraded from opEvents 2.x and if you already have opEvents 4.x running successfully, it likely is
simply something to double check.

Verify the opCommon.json file is valid JSON

Validating a JSON file on the command line can be done using the command:

https://community.opmantek.com/display/NMIS/NMIS+Event+List
https://community.opmantek.com/display/NMIS/Description+of+the+NMIS+Event+Log
https://community.opmantek.com/display/opEvents/opEvents+Normalised+Event+Properties
#
https://community.opmantek.com/display/opEvents/opEvents+input+sources

python -mjson.tool /usr/local/omk/conf/opCommon.json

Restart the opEvents Daemon

Once you have made these changes you will need to restart the opEvents Daemon (opeventsd).

sudo service opeventsd restart

EventRules.json
Also check for similar naming in conf/EventRules.json, ie: is . It should be .node.serviceStatus incorrect node.configuration.serviceStatus

Again, this is mostly for those users setting up opEvents after upgrading from an earlier version.

Just something to double check and be aware of.

Event Policy

There are a few sections in EventActions.json, but the one we're concerned with first is the section. Entries in a given section are numbered for policy
determining the order in which they are processed. Usually we make forwarding the last entry (the entry with the highest number).

Here is the full policy together, the following will explain how it flows.

 "policy": {
 "10":
 {
 "BREAK": "false",
 "IF": "event.any",
 "THEN":
 {
 "10":
 {
 "IF": "event.state =~ /up|closed/",
 "THEN": "tag.escalateToCentral(FALSE) and tag.sendToCentral(TRUE)",
 "BREAK": "true"
 },
 "20":
 {
 "IF": "node.configuration.serviceStatus eq 'Production'",
 "THEN": "tag.escalateToCentral(TRUE) and tag.sendToCentral(FALSE)",
 "BREAK": "true"
 }
 }
 },
 "20":
 {
 "BREAK": "false",
 "IF": "event.any",
 "THEN":
 {
 "10":
 {
 "IF": "event.tag_escalateToCentral eq 'TRUE'",
 "THEN": "escalate.central()",
 "BREAK": "true"
 },
 "20":
 {
 "IF": "event.tag_sendToCentral eq 'TRUE'",
 "THEN": "script.sendToCentral()",
 "BREAK": "true"
 }
 }
 }
 },

Check All Events

The first policy block says process all events, e.g. IF event.any

First we want to check events and filter them in sub-sections. This just makes things easier for a human to read and understand. So our IF section all
at the first level policy.10 is a simple event.any. For any event, the THEN section is again numbered for order, that will then be processed.

Tag any up events

Next we need to decide which events we would like to send to the central instance. We should send all 'Node Up' or 'Closed'
events to the second instance, regardless of the node so it cancels out any escalation. It does not matter
that no 'down' event might not have been sent previously. We set our event tags to be escalateToCentr
al = FALSE and sendToCentral = TRUE

 "10":
 {
 "IF": "event.state =~ /up|closed/",
 "THEN": "tag.escalateToCentral(FALSE) and tag.sendToCentral(TRUE)",
 "BREAK": "true"
 },

You may also have noticed the 'up|closed' entry. These entries take perl regular expressions, so in this
case if up or closed is present in the event/state, it will match and trigger the THEN.

Tag any Production node events to escalate important events

We're going to escalate (for the purposes of this example) all events with a node that has a serviceStatus of 'Production', this could be some other
criteria like the criticality of the event, e.g. "event.priority > 3".

These events will go into a second list, inside the top level, we set our event tags to be escalateToCentral = TRUE and sendToCentral =
FALSE

 "20":
 {
 "IF": "node.configuration.serviceStatus eq 'Production'",
 "THEN": "tag.escalateToCentral(TRUE) and tag.sendToCentral(FALSE)",
 "BREAK": "true"
 }

Now you may have noticed we have two items to action - escalateToMaster and sendToMaster.
escalateToMaster sends an escalation where-as sendToMaster doesn't do anything other than simply send
the event. No escalation required.

Check tags

Next we need to check the tags and if required, escalate or send it to the second instance.

 "20":
 {
 "BREAK": "false",
 "IF": "event.any",
 "THEN":
 {
 "10":
 {
 "IF": "event.tag_escalateToCentral eq 'TRUE'",
 "THEN": "escalate.central()",
 "BREAK": "true"
 },
 "20":
 {
 "IF": "event.tag_sendToCentral eq 'TRUE'",
 "THEN": "script.sendToCentral()",
 "BREAK": "true"
 }
 }
 }

Escalate
As you can see, we reference two different routines in the THEN sections for policy.20.10 and policy.20.20

For the THEN action escalate.central in policy.20.10, we are simply checking if the event has a priority high enough to send and our hours of
operation correspond. If it does, send it. This is defined in the section of JSON. The 360 refers to the escalation to take place after 360 escalate
seconds has passed. Implementing like this will prevent flaps and noisy events from going to the central server, this greatly reduces the noise of
transient events in the environment, you can use a lower time here if you want them faster. You can also perform other .action here, so many options

"escalate": {
 "central": {
 "name": "central",
 "IF": {
 "priority": ">= 1",
 "days": "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday",
 "begin": "0:00",
 "end": "24:00",
 },
 "360": "script.sendToCentral()",
 }
}

Script

Any 'script.X' THEN items are defined in the section of EventActions.json - hey, big surprise, I know script

For policy.20.20, we don't bother testing for a priority, we just send them. This is because events such as 'up' or 'closed' have low priority - but
obviously we want to send them to cancel the 'down' type events.

So our script blocks looks as below.

"script": {
 "sendToCentral": {
 "arguments": [
 "-s",
 "https://your_central_opevents_server/omk",
 "-u",
 "your_opevents_user",
 "-p",
 "your_opevents_password",
 "authority=macro.authority",
 "location=https://your_local_opevents_server/omk/opEvents/events/event._id/event_context",
 "node=event.node",
 "event=event.event",
 "details=event.details",
 "time=event.time",
 "date=event.date",
 "element=event.element",
 "interface_description=event.interface_description",
 "type=event.type",
 "priority=event.priority",
 "level=event.level",
 "state=event.state",
 "stateful=event.stateful"
],
 "exec": "/usr/local/omk/bin/create_remote_event.exe",
 "output": "save",
 "stderr": "save",
 "exitcode": "save"
 }
}

Secure Wrapper
If you wish to not include your username and password in the Event Actions file, you can use a wrapper script.

Create a script e.g. /usr/local/omk/bin/create_remote_event.sh and make the ownership and permissions for root only.

sudo touch /usr/local/omk/bin/create_remote_event.sh
sudo chown root:root /usr/local/omk/bin/create_remote_event.sh
sudo chmod 700 /usr/local/omk/bin/create_remote_event.sh

https://community.opmantek.com/pages/viewpage.action?pageId=27264053

The contents of this script would be:

#/usr/bin/env bash

username and password below, pass through all other arguments.
/usr/local/omk/bin/create_remote_event.pl -u "your_opevents_user" -p "your_opevents_password" $@

Note: If your user's password has special characters (such as $) you may need to escape them in the script. For example a password of
"opeventsPas$w0rd" would be written as:

-p "opeventspas\$w0rd"

Event Actions Script would be updated as such, leaving out the username and password.

"script": {
 "sendToCentral": {
 "arguments": [
 "-s",
 "https://your_central_opevents_server/omk",
 -- snip same as above in here --
 "stateful=event.stateful"
],
 "exec": "/usr/local/omk/bin/create_remote_event.sh",
 "output": "save",
 "stderr": "save",
 "exitcode": "save"
 }
}

Handling a High Volume of Events Being Sent to Primary
Event Server
A faster CLI tool was developed written in GO, which executes in less than half the time, you can find details here Create remote event Fast create
remote event

You can download the latest version from the link in the page above, copy the binary into /usr/local/omk/bin, and rename the file or make a symbolic
link so you can deal with shorter name.

ln -s fast-remote-event-1.x.x-LinuxX86_64.bin fast-remote-event

Then update your Event actions or your shell wrapper /usr/local/omk/bin/create_remote_event.sh to use this binary instead of create_remote_event.pl
or create_remote_event.exe

e.g.

"exec": "/usr/local/omk/bin/fast-remote-event",

To have it return the resulting event id from the primary, include "-q=0" in the arguments.

Finishing Up
And that's it!

You have selected events to be forwarded and tagged them. Tested those tags for actions and depending on the tag and priority, forwarded it to your
central instance.

So for future versions, you might define an event on a node with serviceStatus of "Testing" and choose only to forward it during office hours (for
example). Give it a different tag, check that tag and use escalate with an additional item (say "testing_office_hours_central"). The ways to configure
opEvents really are limited only by your imagination.

Hopefully this article has given you some ideas and pointed you in the right direction.

https://community.opmantek.com/display/opEvents/Create+remote+event#Createremoteevent-Fastcreateremoteevent
https://community.opmantek.com/display/opEvents/Create+remote+event#Createremoteevent-Fastcreateremoteevent

	opEvents - Solution Guide - Sending Events to a Central Event Management Server

