
Advanced Modelling: When a single SNMP variable isn't
enough

Where and How to use CVARs
An example scenario
How to keep temporary CVAR data out of the RRD databases
Using Placeholders

Occasionally you will come across a device or a situation where collecting a single SNMP variable is insufficient, for example when two or more SNMP
properties need to be combined to provide a meaningful measurement.

NMIS version 8.4.8G and later support modelling such scenarios using custom variables, or s. With this mechanism you can temporarily capture up CVAR
to 10 separate SNMP properties as a and define an arbitrarily complex expression (in perl) that transforms these s into the one measurement CVAR CVAR
that you want to collect and/or display.

Where and How to use CVARs

CVARs are supported

in the and expressions in the ,test value NMIS alert and threshold subsystem
in expressions in the general modelling subsystem,calculate
and from NMIS version 8.6 on, also in expressions evereywhere (in versions before that only a single was supported in).control CVAR control

To use s you define the required s as holding a previously specified SNMP variable at the beginning of one of the supported expressions; CVAR CVAR
Subsequently you can then reference the value in the part of the expression that calculates the desired value to be used by NMIS.CVAR

An example scenario

The defines a variety or error counters for DS3 circuits like "dsx3CurrentLCVs" which are based on a 15 minute observation interval and reset DS3 MIB
automatically at the end of the interval. As the interval start and end is arbitrary and up to the device to set, just capturing the error counters themselves is
not quite workable. However, the DS3 MIB also specifies the variable "dsx3TimeElapsed" that holds the seconds elapsed since the start of the current
observation interval. Dividing the raw error counter by the number of seconds into the interval results in a normalised errors-per-second rate which works
well for collection and display.

Here is an excerpt of the relevant model file:

https://community.opmantek.com/display/NMIS/Alerts+-+Using+models+to+generate+custom+events
http://DS3%20MIB

'systemHealth' =>
{
 'sections' => 'ds3Errors',
 'sys' =>
 {
 'ds3Errors' =>
 {
 'indexed' => 'dsx3CurrentIndex',
 'index_oid' => '1.3.6.1.2.1.10.30.6.1.1',
 'headers' => 'ds3intf,ds3linestatus',
 'snmp' => {
 'ds3intf' => {
 'oid' => '1.3.6.1.2.1.2.2.1.2', # ifDescr
 'title' => 'DS3 Interface',
 },
 'ds3linestatus' => {
 'oid' => '1.3.6.1.2.1.10.30.5.1.10', # dsx3LineStatus
 'title' => "DS3 Line Status",
 'calculate' => 'my @x; my %triggers=(1,"No Alarm",2,"Rx Remote Alarm",
4,"Tx Remote Alarm",8,"Rx AIS",16,"Tx AIS",32,"Rx LOF",64,"Rx LOS",128,"Loopback",256,"Test Pattern",512,"
Unknown",1024,"Near end unavailable signal",2048,"Carrier Equip OOS"); while (my ($num,$txt)=each(%triggers)) {
push (@x,$txt) if (int($r) & int($num)); }; return join(", ",@x); ',
 },
...
 'ds3LCV' => {
 'oid' => '1.3.6.1.2.1.10.30.6.1.6', # dsx3CurrentLCVs
 'title' => 'Line Coding Violations per second',
 'calculate' => 'CVAR1=ds3Elapsed; return ($CVAR1? $r/$CVAR1 : 0);',
 },
 }, # sys

 'rrd' => {
 'ds3Errors' => {
 'indexed' => 'true',
 "graphtype" => "ds3Errors",
 "snmp" => {
 'ds3Elapsed' => {
 'oid' => '1.3.6.1.2.1.10.30.5.1.3', # dsx3TimeElapsed
 'title' => 'elapsed seconds in current measurement interval',
 'option' => 'gauge,0:U',
 },
...
 "ds3LCV" => {
 'oid' => '1.3.6.1.2.1.10.30.6.1.6',
 'option' => 'gauge,0:U',
 'title' => "Line Coding Violations per second",
 'calculate' => 'CVAR1=ds3Elapsed; return ($CVAR1? $r/$CVAR1 : 0);',
 },
 }, # rrd
}, # systemhealth

In the example above, the expressions are used in two ways:calculate

to transform the bitfield variable "DS3 Line Status" into a more verbose textual list of component statuses,
and to divide the raw error count by the interval length.dsx3CurrentLCVs dsx3TimeElapsed

In both cases the syntax is very straight-forward:

The expression must be a valid perl statement and return exactly one value.
The tokens , and to are interpreted by NMIS; everything else is perl.$r CVAR0 CVAR9
Defining and using local variables with is ok, but don't attempt to change any global NMIS variables.my
"CVAR1=some_snmp_var;" defines what SNMP object CVAR1 is supposed to hold. The parser understands to for a total of 10 CVAR0 CVAR9
captures.
You can use functions that were defined elsewhere in NMIS in your expression.calculate
You will likely have to include the full module namespace in the function call, e.g. func::beautify_physaddress(...).
Only functions without side-effects should be used.
" " accesses the value of in an expression. The variable " " represents the SNMP variable that the return $r/$CVAR1; CVAR1 $r calculate
expression is attached to.

Please note that

the n replacement in the expression is performed on a purely textual basis, before the expression is handed to the perl interpreter for $CVAR
evaluation :

For string variables you have to provide quotes in your expression, e.g.

calculate => 'CVAR1=somestringthing; return 42 if ("$CVAR1" eq "online");'

Numeric variables can be used straight without quotes.
the n access refers to the value of the named property, ie. the data before any or expressions for the named $CVAR raw replace calculate
property were evaluated.

How to keep temporary CVAR data out of the RRD databases

As outlined above all the objects that you want to access via s must be defined in the same section. If your test/calculate expression is within an CVAR rrd
section, all the other objects will have to be within that section, too, and thus they would be collected by NMIS and stored in RRD - quite wasteful if rrd
these other variables are just temporary and only there to for access using one expression.CVAR

In versions 8.6.0 and above you can prevent this by adding an with value :option nosave

'snmp' => {
 'hrNumUsers' => {
 'oid' => 'hrSystemNumUsers',
 'option' => 'nosave',
 },

In the example above, would be retrieved with SNMP, and other variables could be defined in terms of e.g. , but hrNumUsers CVAR3=hrNumUsers hrNum
 would not be saved.Users

Please note that setting disables alerts for the given object.nosave

Using Placeholders

Sometimes there is a need to create calculated data using data gathered from several sources and calculated into a single table. Situations such as this
might call for use of a plugin (). The problem comes in when the model tries to interpret the sections in the model when NMIS 9 Collect and Update Plugins
there is lack of data to do so. This causes errors in the model. To solve this, there is a keyword. 'placeholder' which can be used in the 'sys' section of the
model definition to tell the model that the 'headers', labels, and 'titles' only exist to create the necessary infrastructure for the data, and the some other
method will be used to create the values. There really isn't much to this, just the keyword 'placeholder', and the value will be printed in the log to say that
the <value> will be used to fill in the data as shown in the example below.

 'ciscoNormalizedCPUMem' => {
 'headers' => 'TotalCPUs,MemoryUsedMax,MemoryUsed,MemoryFreeMax,MemoryFree',
 'placeholder' => 'plugin',
 'graphtype' => 'health',
 'indexed' => 'true',
 'snmp' => {
 'TotalCPUs' => {
 'title' => 'Number of CPUs'
 },
 'MemoryUsedMax' => {
 'title' => 'Maximum Memory Used'
 },
 'MemoryUsed' => {
 'title' => 'Current Memory Used'
 },
 'MemoryFreeMax' => {
 'title' => 'Maximum Memory Free'
 },
 'MemoryFree' => {
 'title' => 'Current Memory Free'
 },
 },
 },

https://community.opmantek.com/display/NMIS/NMIS+9+Collect+and+Update+Plugins

	Advanced Modelling: When a single SNMP variable isn't enough

