
Managing Servers and Services with NMIS8

Compatible with NMIS9

Tabled of Contents

Introduction
Windows Server Support
Unix Server Support
Quickstart Chart of a Service Definition
Configuring NMIS to Monitor Services - Step By Step

Step 1
Step 2
Step 3
Step 4
Step 5

Defining new SNMP based Services to Monitor
Step 1
Step 2
Step 3
Step 4
Step 5
Process Selection Details

Defining new TCP or UDP Ports to Monitor
Defining DNS Server Monitoring
Defining new (sapi-)Script based Services to Monitor

Step 1
Step 2 and Step 3
Step 4
Step 5

Monitoring Services with external programs
Using Nagios Plugins for service monitoring (new in NMIS 8.5.10)
New service monitoring displays in NMIS 8.5.10
Custom Graphs for Services (new in NMIS 8.5.10)

Introduction
NMIS8 is a powerful , but NMIS is a network management system: it performs Windows and Unix server monitoring network management system not only
out of the box if your server supports SNMP. NMIS8 works well with Windows servers and especially with the popular SNMP daemon, which is NET-SNMP
widely used on Linux and other Unix systems.

The core of NMIS server management is the Host Resources MIB, which is standardised in , both the NET-SNMP, Windows SNMP and VMware RFC2790
ESXi daemons implement the Host Resources MIB. But NMIS is not relying on SNMP ; it has capabilities for performance and fault exclusively
management of servers, as well as service (application) monitoring running on servers.

This document describes a few common approaches towards service monitoring with or without using SNMP; There is a companion document named Serv
 which shows a number of practical example service monitoring setups.ice Monitoring Examples

NMIS8 collects and stores the following performance data from servers:

Processor load
Physical memory usage (not currently available from VMware ESXi)
Virtual memory usage (not currently available from VMware ESXi)
Disk usage (capacity and used)
Network interface usage

Service Monitoring

Checks Host Resources MIB for service status
Performs poll of TCP/UDP port
Runs send/expect scripts which return status (can perform full transaction over system and is highly extensible)
Run external programs which return status (and optionally extra values)

You can download NMIS from the Opmantek webpage.

Windows Server Support
Depends on Windows SNMP Service (often referred to as agentless server monitoring). NMIS will collect the following information from Windows Servers
in addition to the already described information.

IP Utilisation
Server Memory Pages per Sec

https://opmantek.com/network-management-system-nmis/
http://www.net-snmp.org/
http://tools.ietf.org/html/rfc2790
https://community.opmantek.com/display/NMIS/Service+Monitoring+Examples
https://community.opmantek.com/display/NMIS/Service+Monitoring+Examples
https://opmantek.com/network-tools-download/

CPU Interrupts
Memory Stats (commited and available bytes)
Number of Users

All of these information requires no Agent to be installed onto the Windows server other than the freely available Windows SNMP Service (part of the
Windows installation and setup).

For more details about installing the SNMP Service on Windows, please see the following:

Enabling SNMP Management on Windows 2008 Server
HOW TO: Configure the Simple Network Management Protocol (SNMP) Service in Windows Server 2003
TechNet: How to Install SNMP Remotely

Unix Server Support
Depends on NET-SNMP daemon being installed and configured, usually installed by default on most Unix platforms. Instructions for installing the NET-
SNMP daemon are included in the .NMIS 8 Installation Guide (up to Version 8.5.4G)

Quickstart Chart of a Service Definition

Parameter Name Relevant for which Service Type Description

Name all Every service definition must have a unique service name.
In NMIS versions before 8.6.2 this also sets the script name for type .script

Service_Type all Every service must specify the type of check to perform.

Description all optional, free from text

Service_Name service, dns, script service: Regular expression to match by process name
: DNS domain or host to look updns

NMIS 8.6.2 and up: : sets the script namescript

Service_Parameters service Regular expression to match by executable path and process arguments

Poll_Interval all except service SNMP-based services are only checked during a type=collect poll cycle

Port port and script port: The TCP or UDP Port number to perform a connect check on.
: The TCP port to perform scripted communication on on.script

Program program and nagios-plugin The external program or plugin that performs the actual service test

Args program and nagios-plugin The arguments for that external program

Max_Runtime program and nagios-plugin How long to let that program run at most

Collect_Output program and nagios-plugin Whether the program output should be collected and stored

Configuring NMIS to Monitor Services - Step By Step
An updated services file "Services.nmis" was distributed with later NMIS8 versions, and is attached to this page , this is compatible with Services.nmis
earlier versions of NMIS8. This file includes definitions for using the script method to poll HTTP, as well as monitoring for a MySQL daemon, and various
ports using NMAP connections. Once Services.nmis is copied to /usr/local/nmis8/conf, you should verify that you have the scripts folder in nmis8, this is
included in the install directory. Running will ensure the service definition cp -r /usr/local/nmis8/install/scripts /usr/local/nmis8/conf
files are available.

When a service "outage" is detected you will receive NMIS events and notifications if NMIS has been configured to do so.

Step 1

From the NMIS Menu, navigate to "System -> System Configuration -> Nodes (devices)"

https://community.opmantek.com/display/NMIS/Enabling+SNMP+Management+on+Windows+2008+Server
http://support.microsoft.com/kb/324263
http://social.technet.microsoft.com/wiki/contents/articles/4032.how-to-install-snmp-remotely.aspx
https://community.opmantek.com/pages/viewpage.action?pageId=753704
https://community.opmantek.com/download/attachments/753911/Services.nmis?version=1&modificationDate=1340949141000&api=v2

Step 2

From the list of nodes, select "edit" from the server you want to monitor services on.

Step 3

From the services box, select the services you want to monitor, you can select several services.

Step 4

When you are done, select "Edit and Update Node", after the next poll cycle runs, within about 5 minutes you will see that the services are now being
monitored

Step 5

You can also now select "Services" from the node menu bar and see a graph of all the monitored services.

Starting with version 8.4.10G the service graphs also include the response time (as number and and graph) which is the elapsed time of the service test.

Defining new SNMP based Services to Monitor
This is how to define a new services based on using SNMP for the status of the service.

This feature requires the device to support the , and specifically the hrSWRun instrumentation which provides "The (conceptual) HOST-RESOURCES-MIB
table of software running on the host."

Step 1

Determine the name of the service process you want to monitor, for example to Monitor MongoDB on Windows, the process name is . As the mongod.exe
MongoDB server state is reported as an attribute for the named process, you'll have to tell NMIS what process to look for.

Step 2

From the NMIS Menu, navigate to "System -> System Configuration -> Services"

https://github.com/kcsinclair/mibs/blob/master/HOST-RESOURCES-MIB.mib

Step 3

Then select add or edit to add a new service or edit an existing service monitoring definition.

Step 4

Give the service a (display) name, for Windows we call them service and for Unix we call them daemons. Insert the appropriate process name in the
Service Name field, and select the Service Type to tell NMIS that this is an SNMP-monitored service.service

Step 5

Click "Add" or "Edit" to save the new service and then you can assign this to a device as described above in "Configuring NMIS Services to Monitor".

Process Selection Details

In NMIS 8.6 we refined the process selection mechanism to improve its flexibility, and you can now check more of the process properties reported by
SNMP.
(Up to Version 8.5.12G only Service Name is matched against the Process Name).

Your given "Service Name" is used (as regular expression) to check the Process Name,
and your given "Service Parameters" value is used (again as regular expression) to check the Process Path and Process Arguments.

You have to provide at least one of the two, and a blank value will be interpreted as 'match anything'.

Note that the Service Name regular expression cannot contain the anchors "^" or "$", whereas the Service Parameters one can.

For example, if you want to check a particular Java application, you would set the Service Name to and the Service Parameters to some identifying java
property for this particular application. To figure out what exactly might distinguish this application from others, have a look at the Service List page for that
node, and the Service and Parameters columns in particular:

Service Parameters

java -Djava.util.logging.config.file=/opt/confluence/conf/logging.properties -Xms512m -Xmx768m -XX:MaxPermSize=512m -Djava.awt.headle

mingetty /sbin/mingetty /dev/tty2

In this example, the Java process happens to be the one for the Confluence application, and the mingetty is the one covering the second terminal.

The following simple configuration would match just those two processes:

 'confluence' => {
 'Name' => 'confluence',
 'Service_Type' => 'service',
 'Poll_Interval' => '5m',
 'Service_Name' => 'java',
 'Service_Parameters' => '/opt/confluence',
 },
 'secondterminal' => {
 'Name' => 'secondterminal',
 'Service_Type' => 'service',
 'Poll_Interval' => '5m',
 'Service_Name' => '(min|a)getty',
 'Service_Parameters' => 'tty2',
 },

You can also be more specific or loose if needed, as both Service Name and Parameters allow regular expressions: The example above will also accept
"agetty" processes serving the second terminal.

Defining new TCP or UDP Ports to Monitor
Assuming you only want to check if a server listens for network connections on a particular TCP or UDP port (without actually exchanging application-level
data with that service), then this is how to instruct NMIS to do that:

Select Service Type port

Give the appropriate port and protocol in the form of (that would be NTP) or (that's SSH)udp:123 tcp:22
Ignore Service Name and all program-related settings

Please note that the open/reachable/closed status for UDP ports is unreliable due to the nature of the protocol; doing end-to-end service-specific tests is
recommended for UDP.

Defining DNS Server Monitoring
NMIS also supports monitoring of DNS servers out of the box:

Service Type is .dns
Up to version 8.4.10G inclusive, the builtin dns monitor requires the node's Name/IP Address setting to hold the node's fully qualified domain
name. NMIS then requests DNS info for this FQDN from the node that is marked for dns service monitoring. The Service Name is ignored.
After version 8.4.10G, you must specify the DNS query target as the Service Name. This can be either an IP address or a fully qualified domain
name (host or domain). Again it is the node marked for dns monitoring that is asked for DNS info, but you've got control over what is requested.

Defining new (sapi-)Script based Services to Monitor
This is how to define a new services based on using a sapi script to connect to the socket and send some data, looking for the correct response.

Please note that this service type does cover scripts written in a general-purpose programming language (e.g. perl, python, php): use Service Type not pro
 for those.gram

Sapi scripts are extremely similar to and documented at the end of ; they're very simple but also quite expect scripts /usr/local/nmis8/lib/sapi.pm
limited capability-wise.

Step 1

Determine the name of the service you want to monitor.

In the example below we call the service " " and we check that the NMIS web application is running and answering.nmis

Note that the script file must be named the same as the Name given to the service.

https://en.wikipedia.org/wiki/Expect

Step 2 and Step 3

Same as above,

From the NMIS Menu, navigate to "System -> System Configuration -> Services"

Then select add or edit to add a new service or edit an existing service monitoring definition.

Step 4

Give the service a name, in this example "nmis", and declare it to be of type and define the port - here port 80.script
In NMIS 8.6.2 and newer you set the script name in the "Service Name" property; in versions before that the "Name" also controlled the script name.must

Step 5

Create a script which will get to the appropriate WEB Application URL, use the basic http service as a basis. The name of the service be the same must
as the name of the script before version 8.6.2; from 8.6.2 onwards it must match the "Service Name" property.

cp /usr/local/nmis8/conf/scripts/http /usr/local/nmis8/conf/scripts/nmis

Then edit that script and change the script to get your URL correctly, in this example the final nmis script looked like this:

send: HEAD /nmis8/ HTTP/1.0
send:
expect: 200 OK

Please note that the "expect" value is interpreted as a , i.e. characters like ".", "*" and a few others need to be escaped with a "\".regular expression

So this script will connect to port 80, send the "HEAD /nmis8/ HTTP/1.0" and a newline, the most basic of HTTP Headers, the response it would get would
be:

HTTP/1.1 200 OK
Date: Tue, 01 Apr 2014 05:19:19 GMT
Server: Apache/2.2.15 (CentOS)
Last-Modified: Thu, 21 Mar 2013 05:14:21 GMT
ETag: "a233b-67c-4d8686950cd27"
Accept-Ranges: bytes
Content-Length: 1660
Vary: Accept-Encoding
Connection: close
Content-Type: text/html; charset=UTF-8

The expect would match the data "200 OK" and declare success. More complex requests could be made here. E.g. checking a database status using
HTTP.

Monitoring Services with external programs

http://perldoc.perl.org/perlretut.html

Starting with version 8.4.10G nmis can also run external programs to test a service status. To interoperate with NMIS such a program must conform to a
few simple rules which are described below.

The steps for enabling this facility are mostly the same as for the other service types, except for the service definition of course. The dialog for Adding or
Editing Services now shows some extra options:

Choosing the Service Type activates the options for running external programs; they are ignored for all other Service Types.program

Program Path must point to the program in question, and must be an absolute path (i.e. starting with). This setting is clearly mandatory, and the /
program in question must be directly executable by the user.nmis
Program Args defines arguments that are to be given to this program when run. This is an optional setting.
Any tokens of the form " will be replaced by the corresponding property of this node; most likely you will want to use "node.something node.

 for the node's dns name or network address, for the logical node name, maybe even . To determine the host node.name node.sysContact
available properties check the ' ' section of (or .json).system /usr/local/nmis8/var/ -node.nmisyournode
Max Program Runtime sets the upper limit (in seconds) for how long NMIS will wait for this program to complete.
If the program has not finished by that time then it's terminated forcibly and the service is marked 'down'. This setting is optional, but highly
recommended - if you don't set a limit then a single uncooperative external program could delay all NMIS collect or update operations indefinitely!
Collect Program Output defines whether extra output by the program is to be collected and stored, or ignored.

The external program must follow these interfacing rules to work with NMIS:

Your external program must report the service status by returning an exit code between 0 and 100 inclusive.
0 means the services is down, 100 means the service is considered up and running perfectly, and values inbetween is interpreted as up-but-
degraded. The service graphs do show the precise value.

 NMIS now distinguishes degraded services properly, shows them in a different color than up services and creates "Service New in NMIS 8.5.10:
Degraded" events (not just "Service Down").
Your external program can't read from stdin, and needs to finish its work and terminate as quickly as feasible; NMIS cannot proceed with further
operations until the external program terminates.
New in NMIS 8.5.10: Your external program provide a textual service status as the first line of output, which NMIS captures (if "Collect may
Program Output" is enabled), displays and includes in any events.
Such a textual service status is also displayed when the service is up. If you would like to record custom numeric values from your service as
described below your script must first return some text status, it should only then return the key=value as below.
Your external program report numeric values back to NMIS by printing pairs on stdout, one pair per line. may key=value
If the Collect Program Output option is enabled, then NMIS will collect these values and store them in the RRD database and the node file. Note
you must first return a status string as above, only the subsequent lines of output will be interpreted as numeric values for "Custom
Measurements"
The key is special: any numeric value given for it will be used directly in the service and service response time graphs.responsetime

Please note that NMIS is somewhat picky where file permissions are concerned. With the default configuration it controls all files under /usr/local
 and it will from all files not named or . This clearly affects the acceptable names /nmis8 strip the execute permissions something.sh something.pl

for your external programs if you want to save them anywhere within the NMIS dir.

A simple adjustment can be made to relax this strictness:

 'nmis_executable' => '(/(bin|admin)/[a-zA-Z0-9_\\.-]+|\\.pl|\\.sh)$',

Setting the Config.nmis option to the above would instruct NMIS to treat all files in and and , as nmis_executable /usr/local/nmis8/bin /admin
well as any and files as executables..pl .sh

Monitoing services with an external program in this fashion is easy to implement, but slightly limited in functionality; if you require access to all the
advanced event management and alerting features of NMIS for a service then we recommend that you instead of using extend your snmpd for this service
the external program facility.

Using Nagios Plugins for service monitoring ()new in NMIS 8.5.10
Starting with NMIS 8.5.10 a new service type is available. All options described for "external programs" above apply unchanged, and the nagios-plugin
"Program Path" has to point to the plugin that you'd like to make use of. (There are two well-known sites that collect Nagios plugins, Nagios https://www.

 and .)monitoring-plugins.org/ http://nagios-plugins.org/

NMIS interprets the Nagios states OK as "service up/100", Warning as "degraded/50" and states Critical and Unknown as "down/0".

At this time Nagios' optional "unit of measure" and "min/max/warning level" returns are ignored. Any "performance data" (as Nagios calls extra numeric
service status data) that your plugin might return is collected if the "Collect Program Output" option is active.

New service monitoring displays in NMIS 8.5.10
NMIS 8.5.10 adds new screens for service overview and service details.

The overview screen listing all monitored services is reached via "Monitored Services" in the "Service Desk" or "Network Status" menus.

As you can see three of the five services shown do make use of the new status text collection (for Service Types "program" and "nagios-plugin").

Clicking on any of the "Service" links brings up the service detail page for this service on this node. (The same details page is also reachable from a node's
"services" tab and from its main node details screen.)

https://community.opmantek.com/display/NMIS/Extending+SNMPd+for+custom+monitoring
http://nagios.org/
https://www.monitoring-plugins.org/
https://www.monitoring-plugins.org/
http://nagios-plugins.org/

As you can see this service also collects extra metrics, in this case "offset". The graph is clickable, as are the two status and response time columns; all
send you to the well-known "graph drill-in" page.

Custom Graphs for Services ()new in NMIS 8.5.10
If your monitored service is program or nagios-plugin based, then you may want to collect and graph extra numeric data (what Nagios calls "performance
data"). Collection and RRD-storage has been possible since 8.4.10G, but support for comfortably making and displaying custom graphs is new.

NMIS 8.5.10 provides a new helper program, which guides you interactively through the process of selecting a ./admin/service_graph_helper.pl
service, its (standard or custom) measurements you'd like to graph, what graph styles you'd like them to have (line or just textual prints) and colors. This
tool is menu-based and results in nice custom graph definitions for NMIS.

The new service details view now displays any custom graphs that might be available for a particular service, like in the example screenshot below:

In this example, a custom graph for just the "firstmetric" extra mesurement was created which is accessible both via the "Last firstmetric" column as well as
the list of custom graphs below. The other custom graph, "testone", displays more than one measurement.

	Managing Servers and Services with NMIS8

