
Extending SNMPd for custom monitoring
NMIS relies primarily on SNMP and ping for collecting measurements of your infrastructure's health, but there are situations where this is insufficiently
flexible: not every interesting device out there is SNMP-capable, and there are concepts and services that do not directly fit into the SNMP universe.

In the document we describe what mechanisms NMIS itself provides for managing non-SNMP services: e.g. Managing Servers and Services with NMIS8
checking ports, looking at process status, checking the DNS and checking textual protocols with send/expect scripts - and the recently added capability to
run external programs for getting a service's status.

This page describes a more generic approach to this kind of problem which doesn't rely on custom features programmed into NMIS: instead we show how
to extend the standard Net-SNMP snmpd with a script or program of your choice, to make an arbitrarily non-standard 'thing' accessible via SNMP (and
thus available to NMIS).

Use-cases for this infrastructure include collecting statistics from services that don't offer SNMP (e.g. the bind DNS server), capturing the status of multi-
component services (e.g. email end-to-end) and so on.

snmpd and pass_persist programs

snmpd's manual page describes a number of extensibility mechanisms, one of them called " programs": snmpd starts that program and pass_persist
delegates an OID subtree to it. Whenever it is queried for variables in that subtree it forwards the request to the program which provides pass_persist
an answer. As the communication is very simple (write to the program's STDIN, read from its STDOUT) it's a very flexible way of capturing custom things;
It's also very efficient because the program is running permanently and there is no repeated startup overhead, and the program can do pass_persist
whatever it needs to do, whenever and however it wants to.

There are a few caveats:

The documentation for this snmpd-to-program communication isn't complete - a blank 'command' is meant to tell your program that it should
terminate.
You'll need to pick an unused OID subtree to attach your script at; the recommends you use .1.3.6.1.4.1.8072.2.255 orNet-SNMP documentation
.1.3.6.1.4.1.2021.255.
The snmpd will block until the program has responded. This means your program needs to perform its operations in a non-blocking fashion, or
your snmp infrastructure will suffer badly.

An example pass_persist program

Here is an example program in perl, which reads every 42 seconds and makes this information available at .1.3.6.1.4.1.2021.255.1 to ./proc/loadavg
3, without blocking your snmpd.

Download: passpersist-example.pl

You would use it by adding the following line to your :snmpd.conf

pass_persist .1.3.6.1.4.1.2021.255 /wherever/you/put/your/passpersist-example.pl

It's quite simple, commented and less than 200 lines of code. Feel free to use it as a template for your own extensions.

Where to go from here

Once you have captured your custom measurements and you've tested the snmpd-pass_persist interaction with snmpwalk or snmpget, the next step
would be to extend the most appropriate model with your new measurements. This part is a straightforward modelling exercise, and you will find ample
documentation in the , and lots of examples in the directory of your NMIS installation.NMIS section of this site models-install/

https://community.opmantek.com/display/NMIS/Managing+Servers+and+Services+with+NMIS8
http://www.net-snmp.org/docs/man/snmpd.conf.html#lbBB
http://www.net-snmp.org/docs/mibs/netSnmpPassExamples.html
https://community.opmantek.com/download/attachments/6686013/persist-delay-fork?version=1&modificationDate=1397179330000&api=v2
https://community.opmantek.com/display/NMIS/Home

	Extending SNMPd for custom monitoring

