Amount of Performance Data Storage NMIS8 Stores

NMIS8 is a Network Management System which performs performance management. NMIS8 collects SNMP data from routers, switches, firewalls,
servers, and many more types of IT devices. It stores the collected data in a performance database, which is an RRD file using RRDTool.

This article will describe how much data NMIS8 stores and how to modify NMIS8 to store more data.

How much data does NMIS8 Store?

What about statistical summarisation?

Can NMIS8 Store More Performance Data?

How would | configure NMIS8 to keep 32 days of raw data?

How would | configure NMIS8 to poll every 1 minute and keep 8 days of raw data?
Can | migrate existing NMIS8 RRD files to the new scheme

Where are NMIS RRD Files Stored?

Conclusion

How much data does NMIS8 Store?

RRDTool is a round robin database, which stores data in a binary file which is effectively circular, you define how many elements of data you want to keep
and keep feeding data and it will keep adding elements up to that many of entries, when it is full, the oldest entries are overwritten. To keep summarised
data you define a summarisation scheme, so the data is rolled up into the next level. In NMIS8 we define how much data RRDTool keeps by using the
NMIS8 modelling system. The files for the NMIS8 models are stored in /path/to/nmis8/models and specifically the default database definitions are kept in
/path/to/nmis8/models/Common-database.nmis

By default NMIS8 polls for performance data every 5 minutes and data in the following scheme:

Data Summary Days Kept For

raw data (5 minute polls) 8 days
30 minute averaged data = 32 days
120 minute averaged data = 189 days

daily averaged data 1890 days (5 years)

This summarisation scheme was chosen to get a good balance of data stored and disk space used. The file sizes created using this scheme are as
follows:

RRD Type File Size

Interface (ifinOctets and ifOutOcts) = 581112 bytes

Packet data 1933120 bytes
HC Packet data (new) 2319408 bytes
MIB-2 IP data 1739976 bytes
NMIS Health data 3091984 bytes

What about statistical summarisation?

NMIS8 does not just keep the AVERAGES, it also keeps the MAXIMUM and MINIMUM for each data point, so in effect you have the range of data seen
for a given summarisation, this is very important statistically, and many systems do not maintain this information. When doing analysis of performance
data, it is important to use the averages (MEAN) as well as the MAXIMUM and MINIMUM (RANGE).

Can NMIS8 Store More Performance Data?

Yes, NMIS8 can be configured to store as much performance data as you have disk for. This is very easy to do when you first install an NMIS system, but
can be done later as well. (If you are using the NMIS8 Virtual Machine please check out our instructions on Resizing NMIS VMs.) To store more data, first
you need to determine how much more data you would like to store, then plug those numbers into the RRD Calculator Spreadsheet rrd_calc2.xls, attached
for your convenience, this will tell you what you need to change in the NMIS8 model file /path/to/nmis8/models/Common-database.nmis

The default Common-database.nmis file contains this:

#
https://community.opmantek.com/display/NMIS/Resizing+NMIS+VMs
https://community.opmantek.com/download/attachments/2326602/rrd_calc2.xls?version=1&modificationDate=1399941924000&api=v2

"db' => {

" hbeat' => '900',

"pol 1" =>'300",

"size' =>{
"reachability' =>{
'step_year' => '288",
'rows_nonth' => '2268",
"rows_year' => '1890',
"step_day' =>"'1",
"step_nonth' =>"'24",
'step_week' =>"'6",
'rows_day' => '2304',
"rows_week' => '1536'

-

nterface' => {
'step_year' => '288",
'rows_nonth' => '2268",
‘rows_year' => '1890',
"step_day' =>"'1",
'step_nonth' =>'24",
'step_week' =>"'6",
'rows_day' => '2304',
"rows_week' => '1536'
b
"default' => {
'step_year' => '288",
"rows_nonth' => '2268",
'rows_year' => '1890',
'step_day' =>"'1'",
"step_nonth' =>"'24",
'step_week' =>"'6",
"rows_day' => '2304',
"rows_week' => '1536'
b
"metrics' =>{
'step_year' => '288",
'rows_nonth' => '2268",
"rows_year' => '1890',
'step_day' =>"'1",
"step_nonth' =>"'24",
'step_week' =>"'6",
'rows_day' => '2304',
"rows_week' => '1536'

This will need to be changed to suit your new scheme, you might like to only keep more interface data, or to change all of them to keep more data.

How would | configure NMIS8 to keep 32 days of raw data?

To configure NMIS8 to keep 32 days of raw data (5 minute) and 96 days of 30 minutes of interface data you would make the following change to the
interface section.

Keep (days) Summarise (minutes) Model Entry Default Value New Value
32 days 5 minutes rows_day 2304 9216
96 days 30 minutes rows_week 1536 4608

The entry for the Common-database.nmis model would look like this after the change:

"interface' => {
'step_year' => '288",
'rows_nonth' => '2268",
'rows_year' => '1890',
"step_day' =>"'1'",
"step_nonth' =>"'24",
'step_week' =>"'6",
"rows_day' => '9216',
"rows_week' => '4608'

b

This change could be made to all the entries in the Common-database.nmis file if required.

NMIS8 will now create new RRD files with the new scheme defined in the model file. The resulting file sizes from the change above are:

RRD Type Old File Size New File Size % Increase

Interface (ifinOctets and ifOutOcts) = 581112 bytes 1391364 bytes 239%

Packet data 1933120 bytes = 4264508 bytes 220%

How would | configure NMIS8 to poll every 1 minute and keep 8 days of raw
data?

To configure NMIS8 to keep 8 days of raw data (with 1 minute polls) and 32 days of 30 minutes of interface data you would make the following change to
all the sections.

Keep (days) Summarise (minutes) Model Entry Default Value New Value
8 days 1 minutes rows_day 2304 11520
32 days 30 minutes rows_week 1536 1536 (no change)

| can get these results using the RRD Calculator (which has been updated after ~12 years to include the NMIS8 steps/rows) this is the screen shot, | have
changed the default of 5 minutes to 1 minute.

https://community.opmantek.com/download/attachments/2326602/rrd_calc2.xls?version=1&modificationDate=1399941924000&api=v2

Polling Interval in Minutes

1]

Step (secs) interval 60
Heartbeat (secs) 180
Day (secs) 86400
Summarise Combine
Keep (days) (minutes) (secs) xff steps rows
8 1 60 0.5 1 11520
32 30 1800 0.5 30 1536
189 120 7200 0.5 120 2268
1890 1440 86400 0.5 1440 1890
RRD Code! NMIS8 Common-database.nmis
RRA:AVERAGE:D.5:1:11520 step day => 1
RRA:AVERAGE:0.5:30:1536 rows_day => 11520
RRA:AVERAGE:0.5:120:2268
RRA:AVERAGE:0.5:1440:1890 step_week => 30
RRA:MAX:0.5:1:11520 rows_week => 1536
RRA:MAX:0.5:30:1536
RRA:MAX:0.5:120:2268 step_month == 120
RRA:MAX:0.5:1440:1830 rows_month == 2268
RRA:MIN:0.5:1:11520
RRA:MIN:0.5:30:1536 step_year == 1440
RRA:MIN:0.5:120:2268 rows_year == 1890
RRA:MIN:0.5:1440:1890

Instructions

* Enter the number of minutes in the poll cycle.

* Enter how many days of each level you would like to keep.

* Enter the summary level in minutes, ie how many poll cycles to combine.

Currently setup as NMIS summarises.

You will need to change the step and polling interface in the top of the file the defaults are hbeat (heartbeat) 900 and poll 300:

tdbt => {
"hbeat' => '900',
"poll' =>"'300'",
'size' => {

The new values from the spreadsheet are 180 and 60, so the change is:

tdbt => {
"hbeat' => '180",
"poll' =>"'60",
'size' => {

The interface entry for the Common-database.nmis model would look like this after the change, the terms steps and rows are from RRDTool, using the
year, month, etc is really a nominal name, these are the types and levels of summarisation, typically we summarise by day, week, month, year, but you can
do others if needed:

nterface' => {
'step_year' => '288",
'rows_nonth' => '2268",
'rows_year' => '1890',
"step_day' =>"'1'",
step_nonth' =>"'24",
step_week' =>"'6",
rows_day' =>'9216',
"rows_week' => '4608'

b

This change should be made to the following sections:

® reachability
® interface
® default

® metrics

After the change to 1 min data for 8 days, the RRD files are larger, an important consideration for overall disk usage.

RRD Type Old File Size New File Size % Increase

Interface (iflnOctets and ifOutOcts) | 581112 bytes 1244664 bytes 214%

Packet data 1933120 bytes = 4973616 bytes 257%

Can | migrate existing NMIS8 RRD files to the new scheme

Yes and no, increasing the amount of data you store is not problem, changing the polling interval to 1 minute creates a logical problem. To change to 1
minute polling might be able to save the existing data but it will be 5 minute polling data, so the graphs would be wrong, you can delete all the existing files
and start anew, and NMIS will just create them with the new values defined in the Common-database.nmis file.

To increase the data you can take existing NMIS8 RRD files and resize them using RRDTool Resize, the documentation for RRDTool resize is available
on the RRDTool website http://oss.oetiker.ch/rrdtool/doc/rrdresize.en.html, in summary it would work like this.

If I wanted to change the amount of data being kept in an existing file, | would first determine the RRA Number for the entry to update, so | would run
RRDTool Info on the file the output looks like this:

[root @ni sdev64 wanedgel]# /usr/local/rrdtool/bin/rrdtool info wanedgel-fastethernetO-1.rrd

filename = "wanedgel-fastethernetO-1.rrd"
rrd_version = "0003"
step = 300

| ast _update = 1355967616

header _si ze = 5256

ds[iflnCctets].index = 0
iflnCctets].type = "COUNTER'
iflnCctets]. mnimal _heartbeat = 900
iflnCctets].nmn = 0.0000000000e+00
iflnCctets].max = 1.0240000000e+06
ifInCctets].last_ds = "9695172"
iflnCctets].value = 1.2818317168e+02
iflnCctets].unknown_sec = 0

i f Oper St at us]
i f Oper St at us]
i f Oper St at us]
i f Oper St at us]

i f Oper Status] .
i f Oper Status].
i f Oper Status].

ifQutCctets].
ifQutCctets].
ifQutCctets].
ifQutCctets].
ifQutCctets].
ifQutCctets].
ifQutCctets].

ds[
ds[
ds|
ds[
ds[
ds|
ds[
ds[
ds[
ds[
ds|
ds[i f Oper St at us] .
ds[
ds|
ds[
ds[
ds[
ds[
ds|
ds[
ds[
ds|

.index =1

.type = " GAUGE"
.mni mal _heartbeat = 900
.mn = 0.0000000000e+00
max = 1.0000000000e+02
last_ds = "100"

val ue = 1.6507604000e+03
unknown_sec = 0

index = 2

type = "COUNTER'

m ni mal _heartbeat = 900
mn = 0.0000000000e+00
max = 1.0240000000e+06
last_ds = "17185853"

val ue = 2.2330066758e+02

http://oss.oetiker.ch/rrdtool/doc/rrdresize.en.html
http://oss.oetiker.ch/rrdtool/doc/rrdresize.en.html

ds[ifQut Cctets]. unknown_sec
rra[0].
rra[0].
rra[0].
rra[0].
rra[0].
rra[0].
rra[0].
rra[0].
rra[0].
rra[0].
rra[0].
rraf[1].
rraf1].
rraf[1].
rra[1].
rraf1].
rraf[1].
rra[1].
rra[1].
rraf[1].
rra[1].
rraf[1].
rral2].
rra[2].
rraf2].
rraf2].
rra[2].
rral2].
rraf2].
rra[2].
rral2].
rra[2].
rraf2].
rraf3].
rraf[3].
rra[3].
rraf3].
rra[3].
rra[3].
rra[3].
rra[3].
rraf3].
rraf[3].
rra[3].
rraf4].
rra[4].
rral4].
rra[4].
rra[4].
rraf[4].
rra[4].
rraf4].
rraf4].
rra[4].
rral4].
rra[5].
rra[5].
rra[5].
rra[5].
rra[5].
rra[5].
rra[5].
rra[5].
rra[5].
rra[5].
rra[5].
rra[6] .
rra[6].
rra[6] .
rra[6].

cf = "AVERAGE"
rows = 2304
cur_row = 537
pdp_per_row = 1
xf f
cdp_prep[0].val ue =
cdp_prep[0].
cdp_prep[1].
cdp_prep[1].
cdp_prep[2].value =
cdp_prep[2].
cf = "AVERAGE"
rows = 1536
cur_row = 1325
pdp_per_row = 6
xf f
cdp_prep[0].
cdp_prep[0].
cdp_prep[1].
cdp_prep[1].
cdp_prep[2].
cdp_prep[2].
cf = "AVERAGE"
rows = 2268
cur_row = 1977
pdp_per_row = 24
xf f
cdp_prep[0].
cdp_prep[0].
cdp_prep[1].
cdp_prep[1].
cdp_prep[2].
cdp_prep[2].
cf = "AVERAGE"
rows = 1890
cur_row = 1585
pdp_per_row = 288
xf f
cdp_prep[0].
cdp_prep[O].
cdp_prep[1].
cdp_prep[1].
cdp_prep[2].
cdp_prep[2].
cf = "MAX"
rows = 2304
cur_row = 611
pdp_per_row = 1
xf f
cdp_prep[0].
cdp_prep[O].
cdp_prep[1].
cdp_prep[1].
cdp_prep[2].
cdp_prep[2].
cf = "MAX"
rows = 1536
cur_row = 1239
pdp_per_row = 6
xf f
cdp_prep[0].
cdp_prep[0].
cdp_prep[1].
cdp_prep[1].
cdp_prep[2].
cdp_prep[2].
cf = "MAX"
rows = 2268
cur_row = 251
pdp_per _row = 24

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

val ue =

= 5.0000000000e-
unknown_
unknown_

unknown_

= 5.0000000000e-
unknown_
unknown_

unknown_

= 5. 0000000000e-
unknown_
unknown_

unknown_

= 5.0000000000e-
unknown_
unknown_

unknown_

= 5. 0000000000e-
unknown_
unknown_

unknown_

= 5. .0000000000e-
unknown_
unknown_

unknown_

=0

01
NaN
dat apoints =
NaN

dat apoi nt's
NaN

dat apoi nt s

1
o

1l
o

1
o

01
1.5618120721e+01
datapoints = 0
2.0000000000e+02
datapoints = 0
2.7509214203e+01
dat apoints = 0

01
1.5614431658e+02
datapoints = 0
2.0000000000e+03
datapoints = 0
2.7504466927e+02
datapoints = 0

01
1.5614431658e+02
datapoints = 0
2.0000000000e+03
datapoints = 0
2.7504466927e+02
datapoints = 0

01
NaN
datapoints = 0
NaN
datapoints = 0
NaN

dat apoints =

1
o

01
7.8502714737e+00
dat apoints = 0
1. 0000000000e+02
datapoints = 0
1.3968230743e+01
datapoints = 0

rraf[6] .
rra[6].
rra[6] .
rra[6].
rra[6].
rra[6] .
rra[6].
rra[7].
rra[7].
rra[7].
rra[7].
rra[7].
rra[7].
rra[7].
rra[7].
rra[7].
rra[7].
rra[7].
rra[8].
rral 8].
rral 8].
rra[8].
rra[8].
rral 8].
rraf[8].
rra[8].
rra[8].
rraf[8].
rral 8].
rra[9].
rra[9].
rra[9].
rra[9].
rra[9].
rra[9].
rra[9].
rra[9].
rra[9].
rra[9].
rra[9].

rra[10] .
rra[10].
rraf 10] .
rra[10] .
rra[10].
rraf 10] .
rra[10].
rra[10].
rra[10] .
rra[10].
rraf 10] .
rraf 11] .
rra[11].
rraf 11] .
rra[11].
rra[11].
rraf 11] .
rra[11].
rraf 11] .
rraf 11] .
rra[11].
rraf 11] .

xff = 5.0000000000e- 01

cdp_prep[0].value = 7.9934094489e+00
cdp_prep[0] . unknown_dat apoi nts = 0
cdp_prep[1].value = 1. 0000000000e+02
cdp_prep[1] . unknown_dat apoints = 0
cdp_prep[2] .value = 1.4389061029e+01
cdp_prep[2] . unknown_dat apoints = 0
cf = "MAX

rows = 1890

cur_row = 1714

pdp_per _row

= 288

xff = 5.0000000000e- 01

cdp_prep[0].value = 7.9934094489e+00
cdp_prep[0] . unknown_dat apoi nts = 0
cdp_prep[1].value = 1. 0000000000e+02
cdp_prep[1] . unknown_dat apoi nts = 0
cdp_prep[2].value = 1.4389061029e+01
cdp_prep[2] . unknown_dat apoints = 0
cf ="MN

rows = 2304

cur_row = 955

pdp_per_row = 1

xff = 5.0000000000e- 01
cdp_prep[0].val ue = NaN
cdp_prep[0] . unknown_dat apoi nts = 0
cdp_prep[1].value = NaN
cdp_prep[1] . unknown_dat apoi nts = 0
cdp_prep[2].value = NaN
cdp_prep[2] . unknown_dat apoints = 0
cf ="MN

rows = 1536

cur_row = 927

pdp_per_row = 6
xff = 5.0000000000e- 01

cdp_prep[0].value = 7.7678492474e+00
cdp_prep[0] . unknown_dat apoi nts = 0
cdp_prep[1].value = 1. 0000000000e+02
cdp_prep[1] . unknown_dat apoi nts = 0
cdp_prep[2].value = 1. 3540983460e+01
cdp_prep[2] . unknown_dat apoints = 0
cf = "MN'
rows = 2268

cf ="MN'

rows = 1890
cur_row = 1641
pdp_per _row = 288

xff = 5.0000000000e- 01
cdp_prep[0].
cdp_prep[O0].
cdp_prep[1].
cdp_prep[1].
cdp_prep[2].
cdp_prep[2].

cur_row = 720
pdp_per_row = 24

xff = 5.0000000000e-01
cdp_prep[0].
cdp_prep[0].
cdp_prep[1].
cdp_prep[1].
cdp_prep[2].
cdp_prep[2].

val ue = 7.6268952036e+00
unknown_dat apoints = 0
val ue = 1.0000000000e+02
unknown_dat apoi nts = 0
val ue = 1.2730238700e+01
unknown_dat apoints = 0

val ue = 7.6268952036e+00
unknown_dat apoints = 0
val ue = 1.0000000000e+02
unknown_dat apoi nts = 0
val ue = 1.2730238700e+01
unknown_dat apoints = 0

From all of this data | am interested in the following six lines:

rraf[0].rows = 2304
rra[1].rows = 1536
rraf[4].rows = 2304
rra[5].rows = 1536
rra[8].rows = 2304
rra[9].rows = 1536

These entries define the storage of the day and week summaries for RRA entries AVERAGE, MIN and MAX.

The RRDTool resize command can only resize one RRA at a time, and works on adding rows, so we need to add 6912 rows to the daily value (9216 -
2304) and add 3072 rows to the weekly value (4608 - 1536). The following are the commands required to resize this RRD.

cp wanedgel-fastethernet0-1.rrd wanedgel-fastet hernetO-1.rrd. bak
/usr/local/rrdtool/bin/rrdtool resize wanedgel-fastethernetO-1.rrd

nv resize.rrd wanedgel-fastethernetO-1.rrd

/usr/local/rrdtool/bin/rrdtool resize wanedgel-fastethernetO-1.rrd

nv resize.rrd wanedgel-fastethernetO-1.rrd

lusr/local /rrdtool/bin/rrdtool resize wanedgel-fastethernetO-1.

nmv resize.rrd wanedgel-fastethernetO-1.rrd

/usr/local/rrdtool/bin/rrdtool resize wanedgel-fastethernetO-1.

nmv resize.rrd wanedgel-fastethernetO-1.rrd

/usr/local/rrdtool/bin/rrdtool resize wanedgel-fastethernetO-1.

nv resize.rrd wanedgel-fastethernetO-1.rrd

lusr/1local/rrdtool/bin/rrdtool resize wanedgel-fastethernetO-1.

nv resize.rrd wanedgel-fastethernetO-1.rrd

This takes a second or two to complete. This process can be scripted easily enough, and has been, this is included in the NMIS8 distribution in /path/to
/nmis8/admin/rrd_resize.pl, the script will determine what RRA's need to be updated and then resize them accordingly.

Where are NMIS RRD Files Stored?

NMIS stores the RRD files in the folder /path/to/nmis8/database, then in various sub-directories depending on what is required. The script rrd_file_update.
pl has the code to traverse a directory structure. NMIS can easily be configured to store RRD files in another location, this is controlled by the NMIS config

item database_root which by default is set to '<nmis_data>/database’.

Conclusion

NMIS8 is a powerful network management system which can keep as much data as you have disk space to store, the defaults make sense for most

rrd

rrd

rrd

rrd

organisations and provide a good balance between statistical granularity and disk space.

GROW 6912

GROW 6912

GROW 6912

GROW 3072

GROW 3072

GROW 3072

	Amount of Performance Data Storage NMIS8 Stores

