
Purging of old data in opConfig

Introduction
Operational Status
Command Revisions

Protecting Revisions
Using the GUI
Automatic Protection

Purging Policy
Inheritance, Setting up defaults

Global
Command Set
Command

Performing the purging
Jobs

Introduction
Versions 2.2 (and newer) of opConfig provide more detailed collection and display of operational status, and now also let you control whether and when
old data should be expired. This document describes how to configure these features.

Operational Status
opConfig's new status display (Views -> Operational Status) is a complement to the plain text logs, to make it easier to get an overview of what opConfig is
doing to which nodes, when, and how successful it was with these operations. This material grows very quickly and expiration is a must.

To configure expiration you need to set the maximum age of status entries is set in :conf/opCommon.nmis

'opconfig' => {
...
 'opconfig_opstatus_maxage' => 604800, # seconds, 1 week

You may want to reduce this value if your opConfig deployment manages lots of machines. The status material is pruned automatically whenever opConfig
performs any kind of operation (GUI or opconfig-cli), if the config entry is set.

Command Revisions
By default opConfig does not remove old revisions from the database; if you run many non-change-detecting commands (or encounter frequent changes in
your commands' outputs) then this will likely make the GUI unwieldy (e.g. the revision drop down menus will become very large).

opConfig versions 2.2 and newer let you control the purging of old data in a very flexible fashion.

Protecting Revisions

By default all revisions are unprotected and subject to purging.

Using the GUI

To ensure that a particular revision of a command for a node is not expired and removed, you can set its status to "protected" using the GUI.

To do so, navigate to the Command Output page (click on a command or change entry on one of the overviews, or select Views -> Command Output). The
Command Summary panel on the right shows the revision in question, and a Protected/Unprotected status button besides it. Simply click the button to
toggle the protection status.

 Automatic Protection

If a command in your command sets has (or has inherited) the property with value true or 1, then the first revision of a autoprotect_first_revision
command (for a node) will be marked as "protected". All subsequent revisions will be unprotected. This is useful for establishing a baseline status that you
don't want to be removed regardless of its age.

The automatic protection setting establishes only a default protection status; You can still change the status later in GUI.

(Less useful but mentioned for completeness' sake: If you add the tag " " to a command's tags in your command sets, then every new revision _protected
for this command will start in the "protected" state.)

The flag can be setautoprotect_first_revision

1.
2.
3.

1.
2.
3.

globally, as in ,opconfig_purging_autoprotect_first_revision conf/opCommon.nmis
or for one command set, in the section for that set in ,purging_policy conf/command_sets.nmis
or for a particular command, as property within this command's definition section in autoprotect_first_revision conf/command_sets.

.nmis

The settings are inherited, and more specific settings override the defaults.

Please note that this feature and does not adjust the protection status of revisions that were captured in the past.does not work retroactively

Purging Policy

There are two criteria for purging of old data:

the number of revisions to keep, controlled by the property ,keep_last
and the maximum age of a revision, controlled by the property .purge_older_than

To explicitly disable or simply set the value to 0.keep_last purge_older_than

You can use these independently or combined. If both are active, then a revision must meet both criteria before being expired.

For example, setting = 100 and = 2592000 (1 month, in seconds) would keep at least the most recent 100 revisions keep_last purge_older_than
and at least the last month's data - or, in other words, it would prune only revisions that are outside the newest 100 older than a month.both and

Protected revisions are not considered or counted and left untouched. The age of a revision is based on its "last updated" timestamp.

When a revision is removed, it also remove the associated job, if no other revision are linked to that job, since opConfig 3.5.1.

Inheritance, Setting up defaults

There are three levels of purging policy:

Global
Command Set
Command

Global

You can set a global default purging policy in :conf/opCommon.nmis

'opconfig' => {
 ...
 'opconfig_purging_keep_last' => 100, # keep 100 most recent revisions
 'opconfig_purging_purge_older_than' => 31536000, # purge revisions older than 1 year
 'opconfig_purging_autoprotect_first_revision' => 'true', # protect the first revision by default

Command Set

You can extend or overrule that default for a whole command set, in :conf/command_sets.d/{vendor-name}.nmis

'IOS_HOURLY' => { # command set name
 ...
 'purging_policy' => {
 'keep_last' => 1000,
 'purge_older_than' => 2592000, # 30 days
 'autoprotect_first_revision' => 'true',
 },

This example overrules all the global defaults for all commands in the IOS_HOURLY set, with a shorter retaining period (but a higher number of minimum
entries).

Command

Finally, you can also set a purging policy for a single command in a command set only, again overriding any of the command set or the global defaults.
Here is such an example, again configured in :conf/command_sets.d/{vendor-name}.nmis

'TS_LINUX_PROCESSES' => { # command set name
 ...
 'commands' => [
 {
 'multipage' => 'true',
 'privileged' => 'true',
 'command' => 'ps -ef', # command
 'keep_last' => 0,
 'purge_older_than' => 86400,
 'tags' => ['troubleshooting', 'operatingsystem'],
 },
],
},

This example makes sure that for the command " in the TS_LINUX_PROCESSES command set, only the last day's revisions are kept, "ps -ef
regardless of any global policy or policy for the TS_LINUX_PROCESSES set. Note that needs to be disabled explicitly here, or the defaults for keep_last
this setting would be inherited.

Performing the purging

The purging operation is and needs to be triggered with , ideally from a cron job:not automatic opconfig-cli.pl

/etc/cron.d/opconfig for example
40 3 * * * root /usr/local/omk/bin/opconfig-cli-pl act=purge_revisions quiet=1

This cron entry would run a daily purge at 03:40.

Jobs
The jobs are purged every time a revision is purged, if there are no other active revisions linked to the job. This was modified since version 3.5.1.

But there is another cli tool, to remove jobs with no revisions associated. This jobs are purged based on the configuration option:

opconfig_queue_expire_after_seconds

Set to 8 days by default => 86400 * 8. The purging operation is and needs to be triggered with , ideally from a cron job:not automatic opconfig-cli.pl

/etc/cron.d/opconfig for example
40 3 * * * root /usr/local/omk/bin/opconfig-cli-pl act=purge_queue

http://opconfig-cli.pl

	Purging of old data in opConfig

