
opCharts Form Schema
Table of Contents

Summary
Form Schemas

Supported Administration Components
Supported opCharts Components
Example Form Schema
Filename
Form Metadata
Supported Field Types
Validation

Example for adding Maintenance Tracking to entityMib Data

Summary

We are providing ways for customers to produce custom form using form schema which can be read by certain components in opCharts to show additional
fields which can be configured to the users liking.

These files are stored in and are json encoded schema which will tell our form system how to render.conf/form_schemas

Currently there is no way to get dynamic data for helping drive select lists for example but this could change in the future, let us know what you want to see.

Form Schemas

Supported Administration Components

Nodes

Supported opCharts Components

Element Lists

Example Form Schema

conf/form_schemas/opCharts_demo.json

{
 "label": "Demo",
 "description": "Demo form schema",
 "component": ["element_lists"],
 "tags": ["interface"],
 "schema": {
 "demo1": {
 "title": "My Title",
 "type": "Text"
 },
 "demo2": {
 "title": "Another Title",
 "type": "Select",
 "options": ["option1", "option2"]
 }
 }
}

Filename

Version

opCharts 4.4.2

https://community.opmantek.com/display/opCharts/opCharts+Element+Lists

The filename must be prefixed with the application name, eg opCharts_

The filename must have .json at the end and only be a-Z 0-9 ascii characters.

Part of the filename will be saved to schema documents so changing the filename at a later date will break linkage.

Form Metadata

key type required description

label String yes Title of the form schema which will be shown in the gui

description String no Give context to your users about what this form is for

component array
[string]

no Allow the form schema to show for different components, is an array so a form could be shared over more than one
component, if this is not defined then it will show over more than type of component.

tags array
[string]

no We use this in element_inventory to then filter down form types for different inventory, its an array so you can share this form
over multiple types of inventory.

schema object yes Deep structure to represent the form

schema.<key> nested
key

yes Defines what the value will be saved under

schema.<key>.
type

string no Defines the type of field type to be rendered, if not defined it will default to Text

schema.<key>.
title

string no Defines the text that appears in a form field's label

schema.<key>.
help

string no Help text to add next to the editor.

schema.<key>.
validators

array[] no A list of validators, see validation below

schema.<key>.
order

integer no Defines the order of the fields to be displayed on the form. It is recommended you use this for every key so that fields have a
fixed order.

Supported Field Types

Schema Value Additional Options

Text

Number

Password

TextArea

Checkbox

Select

Radio

Date yearStart

First year in the list. Default: 100 years ago.

yearEnd

Last year in the list. Default: current year.

DateTime

Validation

type description

requir
ed

Checks the field has been filled in.

numb
er

Checks it is a number, allowing a decimal point and negative values.

range Checks it is a number in a range defined by and options. Message if it is not a number can be set with the option.min max numberMessage

email Checks it is a valid email address.

url Checks it is a valid URL.

match Checks that the field matches another. The other field name must be set in the option.field

regexp Runs a regular expression. Requires the option, which takes a compiled regular expression or a string value. Setting the option regexp match
to ensures that the regexp does NOT pass.false

See Backbone Form Validation for examples and further docs.

https://github.com/powmedia/backbone-forms#validation

{
 "label": "Customer Data",
 "description": "Edit in conf/form_schemas/opCharts_element_inventory_customer.json",
 "component": ["element_lists"],
 "tags": ["interface"],
 "schema": {
 "customerId": {
 "title": "Customer ID",
 "type": "Text",
 "order": 1
 },
 "upStream": {
 "title": "Upstream Contract Speed",
 "type": "Number",
 "validators": [
 { "type": "range", "min": 1, "max": 10000, "message": "Mbps should be between 1 and 10000" }
],
 "order": 2
 },
 "downStream": {
 "title": "Downstream Contract Speed",
 "type": "Number",
 "validators": [
 { "type": "range", "min": 1, "max": 10000, "message": "Mbps should be between 1 and 10000" }
],
 "order": 3
 }
 }
}

Example for adding Maintenance Tracking to entityMib Data
The following is an example form schema so you can track the maintenance renewals of your serial number items using opCharts Element Lists.

The following would be located in /usr/local/omk/conf/form_schemas and in testing was named opCharts_element_lists_serial_numbers.json

https://github.com/powmedia/backbone-forms#validation

{
 "label": "Serial number tracking for EntityMIB Data",
 "description": "Edit in conf/form_schemas/opCharts_element_lists_serial_numbers.json",
 "component": ["element_lists"],
 "tags": ["entityMib"],
 "schema": {
 "under_maintenance": {
 "title": "Under Maintenance",
 "help": "Do we have a maintenance contract for this element or not?",
 "type": "Select",
 "options": ["","Yes", "No"]
 },
 "maintenance_contract": {
 "title": "Maintenance Contract",
 "type": "Text"
 },
 "start_date": {
 "title": "Start Date",
 "yearStart": 2010,
 "yearEnd": 2030,
 "type": "Date"
 },
 "renewal_date": {
 "title": "Renewal Date",
 "yearStart": 2020,
 "yearEnd": 2050,
 "type": "Date"
 }
 }
}

	opCharts Form Schema

